Answer: 757m/s
Explanation:
Given the following :
Mole of neon gas = 1.00 mol
Temperature = 465k
Mass = 0.0202kg
Using the ideal gas equation. For calculating the average kinetic energy molecule :
0.5(mv^2) = 3/2 nRt
Where ;
M = mass, V = volume. R = gas constant(8.31 jK-1 mol-1, t = temperature in Kelvin, n = number of moles
Plugging our values
0.5(0.0202 × v^2) = 3/2 (1 × 8.31 × 465)
0.0101 v^2 = 5796.225
v^2 = 5796.225 / 0.0101
v^2 = 573883.66
v = √573883.66
v = 757.55109m/s
v = 757m/s
<span>
as we know that the velocity vectors are at right angles
magnitude = ?
hypotenuse of a right
triangle.
v^2 = 90^2 + 4^2
v^2 = 8116
Taking the square root of both sides here we get,
v = 90.1 m/s
hope it helps
</span>
Answer:
The answer to your question is: V2 = 1 l
Explanation:
Data
P1 = 200 kPa
P2 = 300 kPa
V1 = 1.5 l
V2 = ?
Formula
P1V1 = P2V2
V2 = (P1V1) / P2
V2 = (200 x 1.5) / 300
V2 = 1 l
Answer:
-8.56V
Explanation:
Our values are given by,
e = 6.04 V
Φ = 30.3
VC = 5.32
We can calculate the voltage across the circuit with the emf formula, that is,




Now, Using Kirchoff Voltage Law,


Finally we have the potential difference across the inductor.
