Answer:
Power = 21[W]
Explanation:
Initial data:
F = 35[N]
d = 18[m]
In order to solve this problem we must remember the definition of work, which tells us that it is equal to the product of a force for a distance.
Therefore:
Work = W = F*d = 35*18 = 630 [J]
And power is defined as the amount of work performed in a time interval.
Power = Work / time
Time = t = 30[s]
Power = 630/30
Power = 21 [W]
An irrational number is a real number that cannot be written as a simple fraction.
4 = 4/1 = rational
0 = 0/1 = rational
-2/3 = rational
4.11111 = irrational
2 = 2/1 = rational
π = 3.141592... = irrational
√6= irrational
Answer:
4.1111, π , √6
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is
