1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
9

A pickup truck is traveling down the highway at a steady speed of 30.1 m/s. The truck has a drag coefficient of 0.45 and a cross

-sectional area of the truck is 3.3 m2. Assume the density of the air is 1.2 kg/m 3. How much energy does the truck lose to air resistance per hour? Give your answer in units of MJ (megajoules).
Physics
1 answer:
Sav [38]3 years ago
4 0

Answer:

The energy that the truck lose to air resistance per hour is 87.47MJ

Explanation:

To solve this exercise it is necessary to compile the concepts of kinetic energy because of the drag force given in aerodynamic bodies. According to the theory we know that the drag force is defined by

F_D=\frac{1}{2}\rhoC_dAV^2

Our values are:

V=30.1m/s

C_d=0.45

A=3.3m^2

\rho=1.2kg/m^3

Replacing,

F_D=\frac{1}{2}(1.2)(0.45)(3.3)(30.1)^2

F_D=807.25N

We need calculate now the energy lost through a time T, then,

W = F_D d

But we know that d is equal to

d=vt

Where

v is the velocity and t the time. However the time is given in seconds but for this problem we need the time in hours, so,

W=(807.25N)(30.1m/s)(3600s/1hr)

W=87.47*10^6J (per hour)

Therefore the energy that the truck lose to air resistance per hour is 87.47MJ

You might be interested in
One of the harmonics on a string 1.30m long has a frequency of 15.60 Hz. The next higher harmonic has a frequency of 23.40 Hz. F
Alja [10]

Answer:

\large \boxed{\text{(a) 7.800 Hz; (b) 20.3 m/s; 40.6 m/s; 60.8 m/s}}

Explanation:

a) Fundamental frequency

A harmonic is an integral multiple of the fundamental frequency.

\dfrac{\text{23.40 Hz}}{\text{15.60 Hz}} = \dfrac{1.500}{1} \approx \dfrac{3}{2}

f = \dfrac{\text{24.30 Hz}}{3} = \textbf{7.800 Hz}

b) Wave speed

(i) Calculate the wavelength

In a  fundamental vibration, the length of the string is half the wavelength.

\begin{array}{rcl}L & = & \dfrac{\lambda}{2}\\\\\text{1.30 m} & = & \dfrac{\lambda}{2}\\\\\lambda & = & \text{2.60 m}\\\end{array}

(b) Calculate the speed s

\begin{array}{rcl}v_{1}& = & f_{1}\lambda\\& = & \text{7.800 s}^{-1} \times \text{2.60 m}\\& = & \textbf{20.3 m/s}\\\end{array}

\begin{array}{rcl}v_{2}& = & f_{2}\lambda\\& = & \text{15.60 s}^{-1} \times \text{2.60 m}\\& = & \textbf{40.6 m/s}\\\end{array}

\begin{array}{rcl}v_{3}& = & f_{3}\lambda\\& = & \text{23.40 s}^{-1} \times \text{2.60 m}\\& = & \textbf{60.8 m/s}\\\end{array}

4 0
3 years ago
A 0.5 kg stone is raised from 1m to 2m height from the ground. what is the change in potential energy of the stone?
Usimov [2.4K]

Given: The mass of stone (m) = 0.5 kg

Raised from heights (h₁) = 1.0 m to (h₂) = 2.0 m

Acceleration due to gravity (g) = 9.8 m/s²

To find: The change in potential energy of the stone

Formula: The potential energy (P) = mgh

where, all alphabets are in their usual meanings.

Now, we shall calculate the change in potential energy of the stone

Δ P = P₂ - P₁ = mg (h₂ - h₁)

or,                = 0.5 kg ×9.8 m/s² ×(2.0 m - 1.0 m)

or,                = 4.9 J

Hence, the required change in the potential energy of the stone will be 4.9 J

4 0
3 years ago
____, one of Saturn's icy moons, is unusual in the solar system in that it has volcanic activity that ejects plumes of icy parti
blondinia [14]

Answer: Enceladus

Explanation:

Enceladus is a small, icy body with an undergound ocean beneath its crust. Cassini discovered that geyser-like jets spew water vapor and ice particles. It is also the sixth largest moon in Saturn and just about a tenth of the largest moon in Saturn; Titan. It is often regarded as one of the most reflective body in the solar system as a result of its icy surface.

4 0
3 years ago
A. A child is twirling a 1.52 kg object in a vertical circle with a radius of 67.6
steposvetlana [31]

Answer:

(a) 4.21 m/s

(b) 24.9 N

Explanation:

(a) Draw a free body diagram of the object when it is at the bottom of the circle.  There are two forces on the object: tension force T pulling up and weight force mg pulling down.

Sum the forces in the radial (+y) direction:

∑F = ma

T − mg = m v² / r

v = √(r (T − mg) / m)

v = √(0.676 m (54.7 N − 1.52 kg × 9.8 m/s²) / 1.52 kg)

v = 4.21 m/s

(b) Draw a free body diagram of the object when it is at the top of the circle.  There are two forces on the object: tension force T pulling down and weight force mg pulling down.

Sum the forces in the radial (-y) direction:

∑F = ma

T + mg = m v² / r

T = m v² / r − mg

T = (1.52 kg) (4.21 m/s)² / (0.676 m) −  (1.52 kg) (9.8 m/s²)

T = 24.9 N

6 0
3 years ago
Caitlin is riding her bike. Which of the following statements tells what is happening?
gtnhenbr [62]
What are the following statements? If there's one that mention a description of current action, or motion, that's your answer.
8 0
3 years ago
Other questions:
  • (Look at the minerals in the linked picture)
    5·1 answer
  • Compared with the amount of current in the filament of a lamp, the amount of current in the connecting wire is A. definitely les
    9·2 answers
  • In a game of egg-toss, you and a partner are throwing an egg back and forth trying not to break it. Given your knowledge of mome
    8·1 answer
  • How can a change in technology affect scientific knowledge?
    7·1 answer
  • A flashlight has a resistance of 30 Q and is connected
    14·1 answer
  • Select the statement that correctly completes the description of phase difference.
    5·1 answer
  • When two hydrogen atoms bond, the positive nucleus of one atom attracts the
    8·1 answer
  • Calculate the weight of a 1 kg mass at earth's surface. The mass of the of the Earth's surface if the mass of the earth is 6 x 1
    7·1 answer
  • Un recipiente contiene 224 dm3 de Ozono de masa 4.561 Kg a 51.09 grados celsius. Calcula la presión del Ozono
    15·1 answer
  • The conservation of momentum is most closely related to
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!