You would expect snow to fail at the peak or the top because the weather is coldest there.
Answer:
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Explanation:
The pH of a buffer solution is calculated using following relation

Thus the pH of buffer solution will be near to the pKa of the acid used in making the buffer solution.
The pKa value of HC₃H₅O₃ acid is more closer to required pH = 4 than CH₃NH₃⁺ acid.
pKa = -log [Ka]
For HC₃H₅O₃
pKa = 3.1
For CH₃NH₃⁺
pKa = 10.64
pKb = 14-10.64 = 3.36 [Thus the pKb of this acid is also near to required pH value)
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Half of the acid will get neutralized by the given base and thus will result in equal concentration of both the weak acid and the salt making the pH just equal to the pKa value.
Answer: As the airplane goes higher, the mechanical energy is changed into gravitational potential energy. While flying, some energy is lost through drag to thermal (heat) energy and sound energy. Some is also lost as the plane makes the air around it move. ... As speed and height decrease, kinetic and potential energy decrease.
Explanation:
Hope this help
1) Molecular formula of ammonium sulfide
(NH4)2 S
2) That means that there are 2*4 = 8 atoms of hydrogen in each molecule of ammoium sulfide, so in 5.20 mol of molecules will be 8 * 5.20 mol = 41.6 moles of atoms of hydrogen
3) To pass to number of atoms multiply by Avogadro's number: 6.022 * 10^23
41.6 moles * 6.022 * 10^23 atoms / mol = 250.5 * 10^23 = 2.50 * 10^25 atoms
Answer: 2.50 * 10^25