Answer:
d. 97.60 g
Explanation:
Given parameters:
Number of moles of formaldehyde = 3.25moles
Ratio:
C H O
1 2 1
Unknown:
Mass of this sample = ?
Solution:
The empirical formula of a compound is its simplest formula. It is the simplest whole number ratio of the atoms in a given substance.
The molecular formula is the actual formula of the compound.
Since the molecular and empirical formula are the same here, the formula of the compound is;
CH₂O
To find the mass of the formaldehyde, use the expression below;
Mass = number of moles x molar mass
molar mass of CH₂O = 12 + 2(1) + 16 = 30g/mol
Mass = 3.25 x 30 = 97.5g
Explanation:
A catalyst has no effect on the equilibrium state, but it enables equilibrium to be reached more quickly by decreasing the “energy of activation”. In fact, a catalyst affects forward and reverse rates equally.
Answer:
true
Explanation:
The digestive tract is made up of organs that food and liquids travel through when they are swallowed, digested, absorbed, and leave the body as feces. These include the mouth, pharynx (throat), esophagus, stomach, small intestine, large intestine, rectum, and anus.
HBr reacts with LiOH and forms LiBr and H₂O as the products. The balanced reaction is
LiOH(aq) + HBr(aq) → LiBr(aq) + H₂O(l)
Molarity (M) = moles of solute (mol) / volume of the solution (L)
Molarity of LiOH = 0.205 M
Volume of LiOH = 29.15 mL = 29.15 x 10⁻³ L
Hence,
moles of LiOH = molarity x volume of the solution
= 0.205 M x 29.15 x 10⁻³ L
= 5.97575 x 10⁻³ mol
The stoichiometric ratio between LiOH and HBr is 1 : 1.
Hence,
moles of HBr in 25.0 mL = moles of LiOH added
= 5.97575 x 10⁻³ mol
Hence, molarity of HBr = 5.97575 x 10⁻³ mol / 25.00 x 10⁻³ L
= 0.23903 M
≈ 0.239 M
Hence, the molarity of the HBr is 0.239 M.
<span>Answer:
(4.184 J/g·°C) x (185 g) x (24.70 - 21.00)âC = 2863.948 J = 2.86 kJ
(2.86 kJ) / (2.00 mol) = 1.43 kJ/mol</span>