<u>Answer:</u> The correct answer is Option 4.
<u>Explanation:</u>
Bromothymol blue, Bromocresol green and Thymol blue are the indicators which change their color according to the change in pH of the solution.
The pH range and color change of these indicators are:
- Bromothymol Blue: The pH range for this indicator is 6.0 to 7.5 and color change is from yellow to blue. It appears yellow below pH 6.0 and blue above pH 7.5
- Bromocresol green: The pH range for this indicator is 3.5 to 6.0 and color change is from yellow to blue. It appears yellow below pH 3.5 and blue above pH 6.0
- Thymol Blue: The pH range for this indicator is 8.0 to 9.6 and color change is from yellow to blue. It appears yellow below pH 8.0 and blue above pH 9.6
As, the highest pH of all the indicators is 9.6, so every indicator will appear blue above pH 9.6.
Hence, the correct answer is Option 4.
Pluto is a dwarf planet, but one of the largest known members, in the Kuiper belt.
The Kuiper Belt extends between 30 AU and 55 AU from the Sun
(1 AU = 1.5 × 10^8 km = distance from Earth to Sun).
Pluto's orbit is highly elliptical. It ranges from 30 AU to 50 AU. When Pluto is closest to the Sun, it is inside the orbit of Neptune (30 AU).
Astronomers class Pluto as a <em>resonant Kuiper belt object</em> (KBO). Because it gets so close to Neptune, its orbit is in <em>resonance</em> with that of Neptune. Pluto makes two orbits for every three of Neptune.
Answer:
is this multiple choice just wondering
First let's find out the oxidation number of Fe in K₄[Fe(CN)₆] compound.
The oxidation number of cation, K is +1. Hence, the total charge of the anion, [Fe(CN)₆] is -4. CN has charge has -1. There are 6 CN in anion. Let's assume the oxidation number of Fe is 'a'.
Sum of the oxidation numbers of each element = Charge of the compound
a + 6 x (-1) = -4
a -6 = -4
a = +2
Hence, oxidation number of Fe in [Fe(CN)₆]⁴⁻ is +2.
Now Fe has the atomic number as 26. Hence, number of electrons in Fe at ground state is 26.
Electron configuration = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s² = [Ar] 3d⁶ 4s²
When making Fe²⁺, Fe releases 2 electrons. Hence, the number of electrons in Fe²⁺ is 26 - 2 = 24.
Hence, the electron configuration of Fe²⁺ = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶
= [Ar] 3d⁶
Hence, the number of 3d electrons of Fe in K₄[Fe(CN)₆] compound is 6.