Because you are never 100% precise during the work, so it's best and most accurate answer is always the average of more trials. basically the more you do, the more accurate the answer shall be
Answer:
C.
Explanation:
They will need to know the influence of gravitational force on objects because gravity can affect an objects weight.
Answer:
Metals, non metals and metalloid
Explanation:
Answer:
64.0 g/mol.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
<em>∨ ∝ 1/√M.</em>
where, ∨ is the rate of diffusion of the gas.
M is the molar mass of the gas.
<em>∨₁/∨₂ = √(M₂/M₁)</em>
∨₁ is the rate of effusion of the unknown gas.
∨₂ is the rate of effusion of He gas.
M₁ is the molar mass of the unknown gas.
M₂ is the molar mass of He gas (M₂ = 4.0 g/mol).
<em>∨₁/∨₂ = 0.25.</em>
∵ ∨₁/∨₂ = √(M₂/M₁)
∴ (0.25) =√(4.0 g/mol)/(M₁)
<u><em>By squaring the both sides:</em></u>
∴ (0.25)² = (4.0 g/mol)/(M₁)
∴ M₁ = (4.0 g/mol)/(0.25)² = 64.0 g/mol.
Answer:
A. The rate of heat transfer through the material would increase.
Explanation:
To calculate the heat transfer in a heat exchanger you decide that there is not heat leakage to the surroundings, that means that magnitude of the two transfer rates will be equal. Any heat lost by the hot fluid, is gained by the cold fluid. The equation that describes this is Q = m×Cp×dT
Where:
heat = mass flow ×specific heat capacity × temperature difference
So if we increase the rate of flow of cooling water and the other variables that ypu can control remain the same, the result is that the rate of heat transfer through the material would increase, as it is stated in option a.