Answer:
0 N, 3.49 m/s
Explanation:
Draw a free body diagram for the bucket at the top of the swing. There are two forces acting on the bucket: weight and tension, both downwards.
If we take the sum of the forces in the radial direction, where towards the center is positive:
∑F = ma
W + T = m v² / r
The higher the velocity that Rony swings the bucket, the more tension there will be. The slowest he can swing it is when the tension is 0.
W = m v² / r
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 1.24 m:
v = √(9.8 m/s² × 1.24 m)
v = 3.49 m/s
I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
Yes because mercury has more protons and electrons that tin. (30 more)
Answer:
Gravity is dependent on the mass of two bodies and the distance between them. There is a strong gravitational attraction between Earth and the Moon because they’re relatively close to one another. There is a strong gravitational attraction between Earth and the Sun because the Sun is so massive
Both
in the domestic and international guidelines tell that when two power-driven
vessels are crossing so as to contain risk of collision, the vessel which has
the other on her starboard side (the give-way vessel) must keep out of the way.
If
you are the give-way vessel, it is your responsibility to avoid a collision. Normally,
this means you must change speed or direction to cross behind the other vessel
which is the stand-on vessel.
At
evening, when you perceive a red light crossing right-to-left in front of you,
you need to change your course. But if you perceive a green light crossing from
left-to-right, you are the stand-on vessel, and should maintain course and
speed.
The leading situations of collision risk are meeting head-on, overtaking, and crossing. When one of two vessels is to keep out of the way (give-way vessel), the other, the stand-on vessel, must uphold course and speed.