A positive solid sphere with electrons dispersed.
Answer
Avogadro's number: One mole of any substance contains 6.022×10²³ molecules
Explanation
While finding the number of moles of oxygen molecules present in 3.65 moles of Na2SO4 the conversion factor used would be Avodagro's number, which is
One mole of any substance contains 6.022×10²³ molecules.
Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
answer: -230kJ
When in doubt, use the google conversations! :)
Answer:
The correct answer is - option D. photosynthesis.
Explanation:
It is shown by the study that most of the atmospheric oxygen comes from the photosynthesis by plants as oxygen is the byproduct of the photosynthesis. Photosynthesis is the process that uses light energy, carbon dioxide, and water to produce food or glucose/sugar and release oxygen as the byproduct.
Many scientists believe that oceanic phytoplankton that releases oxygen by the photosynthesis process makes 80 to 85% of the total oxygen of the atmospheric oxygen.