solution:
The quoted atomic mass on the Periodic Table is the WEIGHTED average of the individual isotopic masses. The higher the isotopic percentage, the MORE that isotope will contribute to the isotopic mass. For this reason, most masses that are quoted on the Table are non-integral.
By way of example we could look to the hydrogen atom. The VAST majority of hydrogen atoms (in this universe) are the protium isotope. i.e. 1H, whose nuclei contain JUST the defining proton. There is a smaller percentage (>1%) of hydrogen atoms WITH one NEUTRON in their nuclei to give the deuterium isotope. i.e. 2H, and because this is relatively cheap, and easily incorporated into a molecule, deuterium labelling is routinely used in analysis.
And there is even a smaller percentage of hydrogen atoms with TWO NEUTRONS in their nuclei, to give the tritium isotope. i.e. 3H. The weighted average of the isotopic percentages gives 
Answer:
102.26 moles of helium were required to Fill the Goodyear Blimp
Explanation:
To solve this question we need to use combined gas law:
PV = nRT
<em>Where P is pressure, V is volume of gas (2500L), n are moles of gas (Our incognite), R is gas constant (0.082atmL/molK) and T is absolute temperature</em>
<em />
Assuming atmospheric condition we can write P = 1atm and T = 25°C = 298.15K
Replacing:
PV/RT = n
1atm*2500L / 0.082atmL/molK*298.15K = n
<h3>102.26 moles of helium were required to Fill the Goodyear Blimp</h3>
<em />
Answer:
its an asteroid
and it seems to be same as picture and what I knew
have a great time
Matter can exist in one of three main states: solid, liquid, or gas. Solid matter is composed of tightly packed particles. A solid will retain its shape; the particles are not free to move around. ... Gaseous matter is composed of particles packed so loosely that it has neither a defined shape nor a defined volume.