The ccorrect answer is C a generator tubrine
Answer:
HCl, also known as hydrochloric acid, has a covalent bond. The hydrogen (H) atom shares an electron with the chlorine (Cl) to form the bond.
Explanation:
Consequently, the bonding electrons in hydrogen chloride are shared unequally in a polar covalent bond. The molecule is represented by the conventional Lewis structure, even though the shared electron pair is associated to a larger extent with chlorine than with hydrogen.
Answer:
See below
Explanation:
propane mole weight = 44 gm / mole
100 gm / 44 gm / mole = 2.27 moles
From the equation, 5 times as many moles of OXYGEN (O2)are required
= 11.36 moles of oxygen
at <u>STP</u> this is 254.55 liters of O2 (because 22.4 L = one mole) and
Using oxygen as 21 percent of air means that
.21 x = 254.55 = x = <u>1212.12 liters of air required </u>
Answer:
Explanation:
Oxygen is one of the most abundant elements on this planet. Our atmosphere is 21% free elemental oxygen. Oxygen is also extensively combined in compounds in the earths crust, such as water (89%) and in mineral oxides. Even the human body is 65% oxygen by mass.
Free elemental oxygen occurs naturally as a gas in the form of diatomic molecules, O2 (g). Oxygen exhibits many unique physical and chemical properties. For example, oxygen is a colorless and odorless gas, with a density greater than that of air, and a very low solubility in water. In fact, the latter two properties greatly facilitate the collection of oxygen in this lab. Among the unique chemical properties of oxygen are its ability to support respiration in plants and animals, and its ability to support combustion.
In this lab, oxygen will be generated as a product of the decomposition of hydrogen peroxide. A catalyst is used to speed up the rate of the decomposition reaction, which would otherwise be too slow to use as a source of oxygen. The catalyst does not get consumed by the reaction, and can be collected for re-use once the reaction is complete. The particular catalyst used in this lab is manganese(IV) oxide.
Answer: 317 joules
Explanation:
The quantity of heat energy (Q) gained by aluminium depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
In this case,
Q = ?
Mass of aluminium = 50.32g
C = 0.90J/g°C
Φ = (Final temperature - Initial temperature)
= 16°C - 9°C = 7°C
Then, Q = MCΦ
Q = 50.32g x 0.90J/g°C x 7°C
Q = 317 joules
Thus, 317 joules of heat is gained.