Answer:
a = 0.1067 [m/s²]
Explanation:
In order to solve this problem, we must first draw a free body diagram with the forces acting on it.
a)
In the attached image we can find the free body diagram.
b)
The net force can be found by performing a sum of forces on the X-axis, these forces are seen in the free body diagram.
∑Fx = Fr
where:
Fr = resultant force [N] (units of Newtons)
![F_{r}=275+275-310\\F_{r}=240[N]](https://tex.z-dn.net/?f=F_%7Br%7D%3D275%2B275-310%5C%5CF_%7Br%7D%3D240%5BN%5D)
c)
Acceleration can be found by means of Newton's second law, which tells us that the sum of the forces in a body or the resulting force is equal to the product of mass by acceleration.
∑F = m*a
where:
m = mass = 2250 [kg]
a = acceleration [m/s²]
![240=2250*a\\a=0.1067[m/s^{2} ]](https://tex.z-dn.net/?f=240%3D2250%2Aa%5C%5Ca%3D0.1067%5Bm%2Fs%5E%7B2%7D%20%5D)
<span>Homeostasis maintains internal balance of the cell.-- Things like shiver if cold sweating if hot to maintain internally </span>
Answer:
Explained in Depth.
Explanation:
It is all matter of what kind of stars are we talking about, for simplicity let's say we are talking about normal stars such as our sun.
If there is a molecular cloud that has a mass that is slightly larger than our sun then it is possible that the gravity will eventually pull together cloud into a sphere that would have enough mass to start nuclear fusion which is important to become a star.
Mass of such cloud would be 1.98x10^30Kg almost equal to the sun's mass.
All of this implies that stars are formed when there is enough mass to let gravity pull it all together into a sphere that has enough gravitational pull to start nuclear fusion inside the core.
Answer:
Explanation:
The acceleration of an object is given by the formula
a = v²/r
The acceleration of the object is bound to increase, if and only if the following are changed as well.
The mass of the object is increased,
The speed of the object is increased,
The radius of the object is contrarily decreased
Taking another look at the formula, we see that if we increase the speed of the object, it increases the acceleration. And since the radius is in the denominator, it has to be reduced for the acceleration to increase