Answer:
72.75 kg m^2
Explanation:
initial angular velocity, ω = 35 rpm
final angular velocity, ω' = 19 rpm
mass of child, m = 15.5 kg
distance from the centre, d = 1.55 m
Let the moment of inertia of the merry go round is I.
Use the concept of conservation of angular momentum
I ω = I' ω'
where I' be the moment of inertia of merry go round and child
I x 35 = ( I + md^2) ω'
I x 35 = ( I + 25.5 x 1.55 x 1.55) x 19
35 I = 19 I + 1164
16 I = 1164
I = 72.75 kg m^2
Thus, the moment of inertia of the merry go round is 72.75 kg m^2.
Wrecking ball wow get Miley Cyrus also I’m sorry I’m joking bout it and you should report the person who be putting “links”
Metalloids are all solid at room temperature. Some metalloids, such as silicon and germanium, can act as electrical conductors under the right conditions, thus they are called semi-conductors. Silicon for example appears lustrous, but is not malleable or ductile (it is brittle - a characteristic of some nonmetals).
Read more on Brainly.com -
brainly.com/question/6662487#readmoreHope that helped!
:)
Answer:
14.8m
Explanation:
Given parameters:
Initial speed = 17m/s
Unknown:
Maximum height = ?
Solution:
At the maximum height, the final speed will be 0m/s;
We use of the kinematics equation to solve this problem.
V² = U² - 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
0² = 17² - (2 x 9.8 x h )
0 = 289 - (9.6h)
-289 = -19.6h
h = 14.8m
The answer is 60 mph.
The speed (v) is distance (d) per time (t): v = d/t
Car A:
v1 = ?
t1 = 2 h
d1 = ?
___
v1 = d1/t1
d1 = v1 * t1
Car B:
v2 = ?
t2 = 1.5 h
d2 = ?
___
v2 = d2/t2
d2 = v2 * t2
<span>Two cars traveled equal distances:
d1 = d2
</span>v1 * t1 = v2 * t2
<span>Car B traveled 15 mph faster than Car A:
v2 = v1 + 15
</span>v1 * t1 = v2 * t2
v2 = v1 + 15
________
v1 * 2 = (v1 + 15) * 1.5
2v1 = 1.5v1 + 22.5
2v1 - 1.5v1 = 22.5
0.5v1 = 22.5
v1 = 22.5/0.5
v1 = 45 mph
v2 = v1 + 15
v2 = 45 + 15
v2 = 60 mph