(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965
Answer:
0.5849Weber
Explanation:
The formula for calculating the magnetic flus is expressed as:

Given
The magnitude of the magnetic field B = 3.35T
Area of the loop = πr² = 3.14(0.24)² = 0.180864m²
angle of the wire loop θ = 15.1°
Substitute the given values into the formula:

Hence the magnetic flux Φ through the loop is 0.5849Weber
The apparent weight of a 1.1 g drop of water is 4.24084 N.
<h3>
What is Apparent Weight?</h3>
- According to physics, an object's perceived weight is a characteristic that describes how heavy it is. When the force of gravity acting on an object is not counterbalanced by a force of equal but opposite normality, the apparent weight of the object will differ from the actual weight of the thing.
- By definition, an object's weight is equal to the strength of the gravitational force pulling on it. It follows that even a "weightless" astronaut in low Earth orbit, with an apparent weight of zero, has almost the same weight that he would have if he were standing on the ground; this is because the gravitational pull of low Earth orbit and the ground are nearly equal.
Solution:
N = Speed of rotation = 1250 rpm
D = Diameter = 45 cm
r = Radius = 22.5 cm
M = Mass of drop = 1.1 g
Angular speed of the water = 


Apparent weight is given by


= 4.24084 N
Know more about Apparent weight brainly.com/question/14323035
#SPJ4
Question:
The spin cycle of a clothes washer extracts the water in clothing by greatly increasing the water's apparent weight so that it is efficiently squeezed through the clothes and out the holes in the drum. In a top loader's spin cycle, the 45-cm-diameter drum spins at 1250 rpm around a vertical axis. What is the apparent weight of a 1.1 g drop of water?
Answer
Se togli 15 mph da 95 e 15, capisci quanto tempo la macchina 2 fa da 0 mph a 70 mph. La prima macchina fa da 0 mph a 60 mph in 5 secondi, e la seconda da 0 mph a 70 mph in 5 secondi. Risulta essere più veloce la seconda macchina. Spero di essere stato utile :)
Explanation: