Glycolysis yields 2 ATP molecules, Krebs cycle yields 2 ATP molecules, ETS yields 34 ATP molecules.
Answer:
Explanation:
2C7H6O2 + 15O2 → 14CO2 + 6H2O.
Answer:
1)Filtration to remove sand
2)Evaporation to obtain sugar
Explanation:
Add water to the mixture and mix,sugar will dissolve.
Filter out the sand.
Evaporate the remaining solution to obtain the sugar.
Answer:
43.5 moles of HNO₃.
Explanation:
The balanced equation for the reaction is given below:
S + 6HNO₃ —> H₂SO₄ + 6NO₂ + 2H₂O
From the balanced equation above,
6 moles of HNO₃ reacted to produce 2 moles of H₂O.
Finally, we shall determine the number of mole of HNO₃ required to produce 14.5 moles of H₂O.
This can be obtained as illustrated below:
From the balanced equation above,
6 moles of HNO₃ reacted to produce 2 moles of H₂O.
Therefore, Xmol of HNO₃ will react to produce 14.5 moles of H₂O i.e
Xmol of HNO₃ = (6 × 14.5)/2
Xmol of HNO₃ = 43.5 moles
Therefore, 43.5 moles of HNO₃ is required to produce 14.5 moles of H₂O.
Based on the calculations, the mass of Aluminum in 4.85 × 10²² atoms is equal to 2.1762 grams.
<h3>How to calculate the mass of Aluminum?</h3>
In order to determine the mass of Aluminum, we would calculate the number of atoms in 1 mole of an Aluminum atom in accordance with Avogadro's constant.
1 mole of Aluminum atom = 6.02 × 10²³ molecules
X moles of Aluminum atom = 4.85 × 10²² molecules
Cross-multiplying, we have:
X = 4.85 × 10²²/6.02 × 10²³
X = 0.0806 moles.
Mass = Molar mass × Number of moles
Mass = 27 × 0.0806
Mass = 2.1762 grams.
Read more on moles here: brainly.com/question/3173452
#SPJ1