The bond between the 2 Cl atoms in a Cl₂ molecule is a covalent bond.
to break this covalent bond, energy is required.
when new bonds form, energy is released as the bond formation makes the molecule stable. molecules with low energy levels are usually stable.
To break the covalent bond, energy is required in other words energy is absorbed.
therefore to break the covalent bond in Cl₂ molecule
1)energy is absorbed
Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
Each mole of Ca(OH)₂ will produce 2 moles of OH- ions
Each mole of OH- ions will require one mole of H+ ions
Thus,
moles of OH- ions = moles of H+ ions = 2 x 0.3
moles of H+ ions required = 0.6
Each mole of HCl will produce one mole of H+ ions
Moles of HCl = moles of H+ ions
Moles of HCl = 0.6
Answer:Na
Explanation:its not in group 3 to 13 hope this helps god bless