1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valkas [14]
3 years ago
14

Consider a car travelling at 60 km/hr. If the radius of a tire is 25 cm, calculate the angular speed of a point on the outer edg

e of the tires. If the car takes 6 seconds to come to a stop, calculate the average angular acceleration of a point on the outer edge of the tires.
Physics
1 answer:
vlabodo [156]3 years ago
5 0

To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.

From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

\omega = \frac{v}{R}

Where,

\omega =Angular velocity

v = Lineal Velocity

R = Radius

At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

\alpha = \frac{\omega}{t}

Where

\alpha =Angular acceleration

\omega = Angular velocity

t = Time

Our values are

v = 60\frac{km}{h} (\frac{1h}{3600s})(\frac{1000m}{1km})

v = 16.67m/s

r = 0.25m

t=6s

Replacing at the previous equation we have that the angular velocity is

\omega = \frac{v}{R}

\omega = \frac{ 16.67}{0.25}

\omega = 66.67rad/s

Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s

At the same time the angular acceleration would be

\alpha = \frac{\omega}{t}

\alpha = \frac{66.67}{6}

\alpha = 11.11rad/s^2

Therefore the angular acceleration of a point on the outer edge of the tires is 11.11rad/s^2

You might be interested in
Un bombero alejado d = 31.0 m de un edificio en llamas dirige un chorro de agua desde una manguera contra incendios a nivel del
Mila [183]

Answer:

El chorro golpea el edificio a una altura de 15.943 metros con respecto al suelo.

Explanation:

El chorro de agua exhibe un movimiento parabólico, dado que este tiene una inclinación inicial y la única aceleración es debida a la gravitación terrestre. Las ecuaciones cinemáticas que modelan el fenómeno son:

Distancia horizontal (en metros)

x = x_{o} + v_{o}\cdot t \cdot \cos \theta

Donde:

x_{o} - Posición horizontal inicial, medida en metros.

t - Tiempo, medido en segundos.

v_{o} - Velocidad inicial, medida en metros por segundo.

\theta - Angulo de inclinación del chorro de agua, medido en grados sexagesimales.

Distancia vertical (en metros)

y = y_{o} + v_{o}\cdot t \cdot \sin \theta + \frac{1}{2}\cdot g \cdot t^{2}

Donde:

y_{o} - Posición vertical inicial, medida en metros.

g - Constante gravitacional, medida en metros por segundo al cuadrado.

Partiendo de la primera ecuación, se despeja el tiempo:

t = \frac{x - x_{o}}{v_{o}\cdot \cos \theta}

Si x = 31\,m, x_{o} = 0\,m, v_{o} = 40\,\frac{m}{s} and \theta = 33^{\circ}, entonces:

t = \frac{31\,m-0\,m}{\left(40\,\frac{m}{s} \right)\cdot \cos 33^{\circ}}

t = 0.924\,s

La altura máxima se calcula por sustitución directa de términos en la segunda ecuación. Si y_{o} = 0\,m, v_{o} = 40\,\frac{m}{s}, t = 0.924\,s y g = -9.807\,\frac{m}{s^{2}}, entonces:

y = 0\,m + \left(40\,\frac{m}{s} \right)\cdot (0.924\,s)\cdot \sin 33^{\circ} + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (0.924\,s)^{2}

y = 15.943\,m

El chorro golpea el edificio a una altura de 15.943 metros con respecto al suelo.

3 0
3 years ago
Please help Need good grade
ivann1987 [24]

Answer:

The other angle is 120°.

Explanation:

Given that,

Angle = 60

Speed = 5.0

We need to calculate the  range

Using formula of range

R=\dfrac{v^2\sin(2\theta)}{g}...(I)

The range for the other angle is

R=\dfrac{v^2\sin(2(\alpha-\theta))}{g}....(II)

Here, distance and speed are same

On comparing both range

\dfrac{v^2\sin(2\theta)}{g}=\dfrac{v^2\sin(2(\alpha-\theta))}{g}

\sin(2\theta)=\sin(2\times(\alpha-\theta))

\sin120=\sin2(\alpha-60)

120=2\alpha-120

\alpha=\dfrac{120+120}{2}

\alpha=120^{\circ}

Hence, The other angle is 120°

6 0
4 years ago
element x has five valence neutrons, element y has one valence electron and element z has one valence electron. which two of the
nikitadnepr [17]
I assume the element has 5 valence electrons (not neutrons).  The similar properties are shared between y and z  since they have the same number of valence electrons.  This is what is primarily responsible for chemical behavior. 
7 0
3 years ago
A rope is wrapped around the rim of a large uniform solid disk of mass 325 kg and radius 3.00 m. The horizontal disk is made to
Naily [24]

Answer:

The angular speed is 0.13 rev/s

Explanation:

From the formula

\tau = I\alpha

Where \tau is the torque

I is the moment of inertia

\alpha is the angular acceleration

But, the angular acceleration is given by

\alpha = \frac{\omega}{t}

Where \omega is the angular speed

and t is time

Then, we can write that

\tau = \frac{I\omega}{t}

Hence,

\omega = \frac{\tau t}{I}

Now, to determine the angular speed, we first determine the Torque \tau and the moment of inertia I.

Here, The torque is given by,

\tau = rF

Where r is the radius

and F is the force

From the question

r = 3.00 m

F = 195 N

∴ \tau = 3.00 \times 195

\tau = 585 Nm

For the moment of inertia,

The moment of inertia of the solid disk is given by

I = \frac{1}{2}MR^{2}

Where M is the mass and

R is the radius

∴I = \frac{1}{2} \times 325 \times (3.00)^{2}

I = 1462.5 kgm²

From the question, time t = 2.05 s.

Putting the values into the equation,

\omega = \frac{\tau t}{I}

\omega = \frac{585 \times 2.05}{1462.5}

\omega = 0.82 rad/s

Now, we will convert from rad/s to rev/s. To do that, we will divide our answer by 2π

0.82 rad/s = 0.82/2π rev/s

= 0.13 rev/s

Hence, the angular speed is 0.13 rev/s,

6 0
3 years ago
Please help! If the instantaneous speed of an object remains constant, can its instantaneous velocity change? If the instantaneo
kondaur [170]
<span>
I think the the answer would be no. </span> If the instantaneous speed of an object remains constant, then its instantaneous velocity would not change. S<span>ince v = c for c is some constant, then |v| = |c|. This is regardless of the sign of c. Hope this answers the question.</span>
4 0
4 years ago
Other questions:
  • What is the result of (6.2*10 4)*(3.3*10 2) expressed in scientific notation?
    10·1 answer
  • in a lightning dischage, 30C of charge moves through a potential difference 108V in 20mins. what is the current of the lightning
    6·1 answer
  • Gravity holds planets in orbit because planets are attracted to each other’s gravitational force true or false
    14·2 answers
  • A flatbed truck is carrying a 20-kg crate up a sloping road. The coefficient of static friction between the create and the bed i
    11·1 answer
  • If our frame of reference was the sun would the earth be moving?
    6·1 answer
  • Mendeleev
    9·2 answers
  • Which electromagnetic waves have the greatest frequencies? ​
    14·1 answer
  • 3
    11·1 answer
  • What is the function of mitocondria? Pls Anyone
    9·2 answers
  • Prolonged exposure to movement in one direction ________ the motion detectors responsive to that direction. When the movement st
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!