1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
10

Which of the following statements cannot be supported by Kepler's laws of planetary motion? a. The distance of a planet around t

he sun changes throughout its orbit. b. The speed a planet is moving around the sun changes throughout the year. c. The orbital period of Mercury can be calculated using the orbital period of Jupiter and the average distances of both planets. d. The age of the four largest planets can be determined using the age of the four smallest planets and the average distances of each planet.
Physics
1 answer:
hodyreva [135]3 years ago
5 0

i guess option (a)

is the right one

if it's correct

select me as brainliest

You might be interested in
If the action force is a player kicking a soccer ball, then what is the reaction force?
LiRa [457]
The force acting on his feet.
4 0
3 years ago
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
3 years ago
A boy pushes a cart with a constant velocity of 0.5m/s by applying a force of 60 N. What is the total frictional force acting on
Nutka1998 [239]

Answer:

60N

Explanation:

in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>

therefore the maximum amount of frictional force is equal to the applied force which is 60N.

because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N

8 0
4 years ago
Use Kepler’s third law and the orbital motion of Earth to determine the mass of the Sun. The average distance between Earth and
dexar [7]

Kepler’s
third law formula: T^2=4pi^2*r^3/(GM)

We’re trying to find M, so:

M=4pi^2*r^3/(G*T^2)

M=4pi^2*(1.496
× 10^11 m)^3/((6.674× 10^-11N*m^2/kg^2)*(365.26days)^2)

M=1.48× 10^40(m^3)/((N*m^2/kg^2)*days^2))

Let’s work
with the units:

(m^3)/((N*m^2/kg^2)*days^2))=

=(m^3*kg^2)/(N*m^2*days^2)

=(m*kg^2)/(N*days^2)

=(m*kg^2)/((kg*m/s^2)*days^2)

=(kg)/(days^2/s^2)

=(kg*s^2)/(days^2)

So:

M=1.48× 10^40(kg*s^2)/(days^2)

Now we need to convert days to seconds in order to cancel
them:

1 day=24 hours=24*60minutes=24*60*60s=86400s

M=1.48× 10^40(kg*s^2)/((86400s)^2)

M=1.48× 10^40(kg*s^2)/(
86400^2*s^2)

M=1.48× 10^40kg/86400^2

M=1.98x10^30kg

The
closest answer is 1.99
× 10^30

(it may vary
a little with rounding – the difference is less than 1%)


8 0
3 years ago
Read 2 more answers
Which arrow represents the change of state described<br> above?<br> M<br> N<br> P<br><br> Q
Anon25 [30]

Answer: The Q arrow

Explanation: when the solid is heated it changes into a liquid state first this action represented the Q arrow

5 0
2 years ago
Other questions:
  • a sleepy atudent drops a calculator out of a window yhata 20.7 m off the geound. we can ignore air resistance. what js the veloc
    11·1 answer
  • The branch of science concerning heat flow and energy conversions is called _____. chemistry thermodynamics conversion science a
    13·2 answers
  • Newtons third law of motion describes how forces act in pairs true or false HELPPPP!!!!
    11·2 answers
  • Please help!
    12·1 answer
  • Neap tides, relatively weak tides, occur when the Moon is in position(s)
    6·1 answer
  • A student's life was saved in an automobile accident because an airbag expanded in front of his head. If the car had not been eq
    5·1 answer
  • You are camping in the breathtaking mountains if Colorado. You spy an unopened diet soda can floating motionless below the surfa
    10·1 answer
  • A stone is dropped from the upper observation deck of a tower, "500" m above the ground. (Assume g = 9.8 m/s2.) (a) Find the dis
    10·1 answer
  • One of the reasons it is important to keep our water supplies pollution free is potability. Water that is potable is
    8·2 answers
  • Two cars are travelling in the same direction on a road. The blue car is travelling at 50 m/s in front of the red car, which is
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!