Answer:
Carboxylic acids produce hydrogen bonds amongst themselves and possess lower vapor pressure. They generally possess a sour odor. When an acid and a base react with each other to produce salt and water and comprises the combination of hydrogen and hydroxide ions, the reaction is termed the neutralization reaction. Thus, when carboxylic acid reacts with base the reaction is termed neutralization.
On the other hand, esters are known for their pleasant fragrances. They do not produce hydrogen bonds amongst themselves and possess higher vapor pressure. A hydration reaction in which free hydroxide dissociates the ester bonds between the glycerol and fatty acids of a triglyceride, leading to the formation of free fatty acids and glycerol is termed saponification.
Thus, the given blanks can be filled with carboxylic acid, carboxylic acid, esters, esters, esters, and carboxylic acid.
Answer:
87.5 mi/hr
Explanation:
Because a = Δv / Δt (a = vf - vi/ Δt), we need to find the acceleration first to know the change in velocity so we can determine the final velocity.
vf = 60 mi/hr
vi = 0 mi/hr
Δt = 8 secs
a = vf - vi/ Δt
= 60 mi/hr - 0 mi/hr/ 8 secs
= 60 mi/hr / 8 secs
= 7.5 mi/hr^2
Now that we know the acceleration of the car is 7. 5 mi/hr^2, we can substitute it in the acceleration formula to find the final velocity when the initial velocity is 50 mi/hr after 5 secs.
vi = 50 mi/ hr
Δt = 5 secs
a = 7.5 mi/ hr^2
a = vf - vi/ Δt
7.5 = vf - 50 mi/hr / 5 secs
37.5 = vf - 50
87.5 mi/ hr = vf
The orbitals closest to the nucleus is the orbital wih the lowest energy. This is according to the basic rules stating that the energy of the shells as its principal quantum number increases, also increases. Thus the answer in 1 is B. Valence electrons are found in the outermost electron shell, on the other hand.
Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]




The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Answer:
2. 181.25 K.
3. 0.04 atm.
Explanation:
2. Determination of the temperature.
Number of mole (n) = 2.1 moles
Pressure (P) = 1.25 atm
Volume (V) = 25 L
Gas constant (R) = 0.0821 atm.L/Kmol
Temperature (T) =?
The temperature can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
1.25 × 25 = 2.1 × 0.0821 × T
31.25 = 0.17241 × T
Divide both side by 0.17241
T = 31.25 / 0.17241
T = 181.25 K
Thus, the temperature is 181.25 K.
3. Determination of the pressure.
Number of mole (n) = 10 moles
Volume (V) = 5000 L
Temperature (T) = –10 °C = –10 °C + 273 = 263 K
Gas constant (R) = 0.0821 atm.L/Kmol
Pressure (P) =?
The pressure can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
P × 5000 = 10 × 0.0821 × 263
P × 5000 = 215.923
Divide both side by 5000
P = 215.923 / 5000
P = 0.04 atm
Thus, the pressure is 0.04 atm