Answer:
Empirical formula is C₂H₆O.
Explanation:
Empirical formula:
It is the simplest formula gives the ratio of atoms of different elements in small whole number
Given data:
Percentage of hydrogen = 13.3%
Percentage of carbon = 52.0%
Percentage of oxygen = 34.7%
Empirical formula = ?
Molecular formula = ?
Solution:
Number of gram atoms of H = 13.3 / 1.01 = 13
.17
Number of gram atoms of O = 34.7 / 16 = 2.17
Number of gram atoms of C = 52.0 / 12 = 4.3
Atomic ratio:
C : H : O
4.3/2.17 : 13.17/2.17 : 2.17/2.17
2 : 6 : 1
C : H : O = 2 : 6 : 1
Empirical formula is C₂H₆O.
Molecular formula:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
n = 46 / 158
The relative molecular mass of compound is not correct.
Exothermic. The reaction of the two elements form the compound iron sulfide.
17.8 g of sodium perchlorate contains 8.73 × 10²² Na⁺ ions, 8.73 × 10²² ClO₄⁻ ions, 8.73 × 10²² Cl atoms and 3.49 × 10²³ O atoms.
First, we will convert 17.8 g of NaClO₄ to moles using its molar mass (122.44 g/mol).

Next, we will convert 0.145 moles to molecules of NaClO₄ using Avogadro's number; there are 6.02 × 10²³ molecules in 1 mole of molecules.

NaClO₄ is a strong electrolyte that dissociates according to the following equation.
NaClO₄ ⇒ Na⁺ + ClO₄⁻
The molar ratio of NaClO₄ to Na⁺ is 1:1. The number of Na⁺ in 8.73 × 10²² molecules of NaClO₄ is:

The molar ratio of NaClO₄ to ClO₄⁻ is 1:1. The number of ClO₄⁻ in 8.73 × 10²² molecules of NaClO₄ is:

The molar ratio of ClO₄⁻ to Cl is 1:1. The number of Cl in 8.73 × 10²² ions of ClO₄⁻ is:

The molar ratio of ClO₄⁻ to O is 1:1. The number of O in 8.73 × 10²² ions of ClO₄⁻ is:

17.8 g of sodium perchlorate contains 8.73 × 10²² Na⁺ ions, 8.73 × 10²² ClO₄⁻ ions, 8.73 × 10²² Cl atoms and 3.49 × 10²³ O atoms.
You can learn more Avogadro's number here: brainly.com/question/13302703
Answer:
Concentration, because the amounts of reactants and products remain constant after equilibrium is reached.
Explanation:
The rate of reaction refers to the amount of reactants converted or products formed per unit time.
As the reaction progresses, reactions are converted into products. This continues until equilibrium is attained in a closed system.
When equilibrium is attained, the rate of forward reaction is equal to the rate of reverse reaction, hence the concentration of reactants and products in the system remain fairly constant over time.
When deducing the rate of reaction, concentration of the specie of interest is plotted on the y-axis against time on the x-axis.