Answer:
55
Step-by-step explanation:
there are two ways to answer : since angle 1 and the 125 degree angle are a linear pair, you can do 180-125 = 55, or, since the three angles in the triangle always add up to 180, you can do 180-37-88 = 55.
5/6 i think ! because 5 students did out of 6, i could be wrong!
Answer:
The value of given limit problem is 0.
Step-by-step explanation:
The given limit problem is
![lim_{x\rightarrow \infty}\dfrac{6x^3+5x-7}{6x^4-4x^3-9}](https://tex.z-dn.net/?f=lim_%7Bx%5Crightarrow%20%5Cinfty%7D%5Cdfrac%7B6x%5E3%2B5x-7%7D%7B6x%5E4-4x%5E3-9%7D)
We need to find the value of given limit problem.
Divide the numerator and denominator by the leading term of the denominator, i.e., ![x^4](https://tex.z-dn.net/?f=x%5E4)
![lim_{x\rightarrow \infty}\dfrac{\frac{6x^3+5x-7}{x^4}}{\frac{6x^4-4x^3-9}{x^4}}](https://tex.z-dn.net/?f=lim_%7Bx%5Crightarrow%20%5Cinfty%7D%5Cdfrac%7B%5Cfrac%7B6x%5E3%2B5x-7%7D%7Bx%5E4%7D%7D%7B%5Cfrac%7B6x%5E4-4x%5E3-9%7D%7Bx%5E4%7D%7D)
![lim_{x\rightarrow \infty}\dfrac{\frac{6}{x}+\frac{5}{x^3}-\frac{7}{x^4}}{6-\frac{4}{x}-\frac{9}{x^4}}](https://tex.z-dn.net/?f=lim_%7Bx%5Crightarrow%20%5Cinfty%7D%5Cdfrac%7B%5Cfrac%7B6%7D%7Bx%7D%2B%5Cfrac%7B5%7D%7Bx%5E3%7D-%5Cfrac%7B7%7D%7Bx%5E4%7D%7D%7B6-%5Cfrac%7B4%7D%7Bx%7D-%5Cfrac%7B9%7D%7Bx%5E4%7D%7D)
Apply limit.
![\dfrac{\frac{6}{ \infty}+\frac{5}{ \infty}-\frac{7}{ \infty}}{6-\frac{4}{ \infty}-\frac{9}{ \infty}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cfrac%7B6%7D%7B%20%5Cinfty%7D%2B%5Cfrac%7B5%7D%7B%20%5Cinfty%7D-%5Cfrac%7B7%7D%7B%20%5Cinfty%7D%7D%7B6-%5Cfrac%7B4%7D%7B%20%5Cinfty%7D-%5Cfrac%7B9%7D%7B%20%5Cinfty%7D%7D)
We know that
.
![\dfrac{0+0-0}{6-0-0}](https://tex.z-dn.net/?f=%5Cdfrac%7B0%2B0-0%7D%7B6-0-0%7D)
![\dfrac{0}{6}](https://tex.z-dn.net/?f=%5Cdfrac%7B0%7D%7B6%7D)
![0](https://tex.z-dn.net/?f=0)
Hence, the value of given limit is 0.