Answer:
CH2FCOOH > CH2ClCOOH > CH2BrCOOH > CH3COOH
Explanation:
CH2FCOOH > CH2ClCOOH > CH2BrCOOH > CH3COOH
More electronegative atom of halogen is , stronger acid will be.
<u>Answer:</u> The electronic configuration of gallium is written below and number of valence electrons is 3.
<u>Explanation:</u>
Electronic configuration is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom is determined by the atomic number of that atom.
Valence electrons are defined as the electrons present in the outermost shell of an atom.
We are given:
An element Gallium having atomic number as 31.
Number of electrons = 31
Electronic configuration of Gallium is: 
This element has 3 electrons in its outermost shell. So, the number of valence electrons is 3
Hence, the electronic configuration of gallium is written below and number of valence electrons is 3.
Answer:
Explanation:
That's correct. Once Aluminum becomes an ion, it is very hard to force it to take back its electrons. Only a few elements can do it. Iron is not one of them.
First, we need to calculate moles of hydrazoic acid NH3:
moles NH3 = molarity * volume
= 0.15 m * 0.025 L
= 0.00375 moles
moles NaOH = molarity * volume
= 0.15 m * 0.015 L
= 0.00225 moles
after that we shoul get the total volume = 0.025L + 0.015L
= 0.04 L
So we can get the concentration of NH3 & NaOH by:
∴[NH3] = moles NH3 / total volume
= 0.00375 moles / 0.04 L
= 0.09375 M
∴[NaOH] = moles NaOH / total volume
= 0.00225 moles / 0.04 L
= 0.05625 M
then, when we have the value of Ka of NH3 so we can get the Pka value from:
Pka = -㏒Ka
= - ㏒ 1.9 x10^-5
= 4.7
finally, by using H-H equation we can get PH:
PH = Pka + ㏒[salt/ basic]
PH = 4.7 +㏒[0.05625/0.09375]
∴ PH = 4.48