Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr
Answer:
α = τ/I = 0.77 / (0.70(0.30²)) = 12.22222... = 12 rad/s²
Explanation:
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.
A leaf is organic matter because organic matter refers to anything from something living. because a leaf is living or was at one point it is organic matter