Wavespeed = frequency x wavelength
= 14 x 9
= 126 mm/s
= 0.126 m/s
Answer:
The acceleration of the earth is 7.05 * 10^-25 m/s²
Explanation:
<u>Step 1:</u> Data given
mass of the apple = 0.43 kg
acceleration = 9.8 m/s²
mass of earth = 5.98 * 10 ^24 kg
<u>Step 2:</u> Calculate the acceleration of the earth
Following the third law of Newton F = m*a
F(apple) = F(earth) = m(apple)*a(apple)
F(apple) = 0.43 kg * 9.8 m/s² = 4.214 N
a(earth) = F(apple/earth)/m(earth)
a(earth) = 4.214N /5.98 * 10 ^24 kg
a(earth) = 7.05 * 10^-25 m/s²
The acceleration of the earth is 7.05 * 10^-25 m/s²
Answer:
a set up where current flows without a voltage difference
Explanation:
because a circuit is a set up of different components, and throughout the circuit the voltage is the same, even with more components
<span>Mass of rock 1 is m1 = 10 kg Mass of rock 2 is m2 = 20 kg 10-kg rock takes T (the same time ) to reach the ground as similar to 20-kg rock that takes time T to reach the ground. If no air resistance is present, the rate of descent depends only on how far the object has fallen, no matter how heavy the object is. This means that two objects will reach the ground at the same time if they are dropped simultaneously from the same height. This statement follows from the law of conservation of energy and has been demonstrated experimentally by dropping a feather and a lead ball in an airless tube.
When air resistance plays a role, the shape of the object becomes important. THUS 10-KG & 20-KG ROCK reaches the ground in T-time</span>
Answer:
B. Landscape B
Explanation:
Shale is fine sediment pressed together to form rock.
Sandstone is larger (sand-grain-sized) sediment cemented together to form rock.
Shale erodes faster, as evidenced by the second attachment. That attachment shows erosion of a rock face consisting of interbedded shale and sandstone. The shale has receded significantly, leaving the sandstone layers with space between them.