Answer:
36.55 J
Explanation:
PE = Potential energy
KE = Kinetic energy
TE = Total energy
The following data were obtained from the question:
Position >> PE >>>>> KE >>>>>> TE
1 >>>>>>>> 72.26 >> 27.74 >>>> 100
2 >>>>>>>> 63.45 >> x >>>>>>>> 100
3 >>>>>>>> 58.09 >> 41.91 >>>>> 100
The kinetic energy of the pendulum at position 2 can be obtained as follow:
From the table above, at position 2,
Potential energy (PE) = 63.45 J
Kinetic energy (KE) = unknown = x
Total energy (TE) = 100 J
TE = PE + KE
100 = 63.45 + x
Collect like terms
100 – 63.45 = x
x = 36.55 J
Thus, the kinetic energy of the pendulum at position 2 is 36.55 J.
Answer:
Being flammable means it supports burning,e.g. Oxygen, but being combustible means burning itself too. e.g. Hydrogen.
Explanation:
Hope it helps!!
Answer:
[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.
Explanation:
Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.
Analysis:
H₂CO₃(aq) ⇄ H⁺(aq) + HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷
C(i) 0.115M 0 0
ΔC -x +x +x
C(eq) 0.115M - x x x
≅ 0.115M
Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M
= 4.3 x 10⁻⁷ => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.
In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion concentration, the hydroxide ion concentration is then calculated from
[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.
________________________________________________________
NOTE: The 2.32 x 10⁻⁴M value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.
Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
Molar mass of water 18g/mol
Number of mols = 50.0g/18g/mol =2.78 mol
Heat absorbed = 40.7 kj/mol * 2.78 mol = 113.1 kj.