Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place
Answer:
The velocity of the plane at take off is 160 m/s.
The distance travel by the plane in that time is 3200 meter.
Explanation:
Given:
Acceleration, a = 4 m/s²
Time, t = 40 s
u = 0 i .e initial velocity
To Find:
velocity , v = ?
distance , s =?
Solution:
we have first Kinematic equation
v = u + at
∴ v = 0 + 4×40
∴ v = 160 m/s
Now by Third Kinematic equation

∴ s = 0 + 0.5 × 4× 40²
∴ s = 3200 meter