Answer:
f1 = 58.3Hz, f2 = 175Hz, f3 = 291.6Hz
Explanation:
lets assume speed of sound is 350 m/s.
frequencies of a standing wave modes of an open-close tube of length L
fm = m(v/4L)
where m is 1,3,5,7......
and fm = mf1
where f1 = fundamental frequency
so therefore: f1 = 350 x 4 / 1.5
f1 = 58.3Hz
f2 = 3 x 58.3
f2 = 175Hz
f3 = 5 x 58.3
f3 = 291.6Hz
Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,
⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm
Easy the answer is to Compress
A) R = 1 / ( (1 / R1)+(1 / R2)+(1 / R3) )
b) I = U / R
c) I1 = U / R1 ... etc.
It's the ozone layer (O3)