The correct answer is "None of the above; all of these statements are valid." All the statements namely, it depends on the particle's charge, it depends on the strength of the external magnetic field, it depends on the particle's velocity, and it acts at right angles to the direction of the particle's motion are all valid. Thank you for posting your question. I hope this answer helped you. Let me know if you need more help.
Let R be radius of Earth with the amount of 6378 km h = height of satellite above Earth m = mass of satellite v = tangential velocity of satellite
Since gravitational force varies contrariwise with the square of the distance of separation, the value of g at altitude h will be 9.8*{[R/(R+h)]^2} = g'
So now gravity acceleration is g' and gravity is balanced by centripetal force mv^2/(R+h):
m*v^2/(R+h) = m*g' v = sqrt[g'*(R + h)]
Satellite A: h = 542 km so R+h = 6738 km = 6.920 e6 m g' = 9.8*(6378/6920)^2 = 8.32 m/sec^2 so v = sqrt(8.32*6.920e6) = 7587.79 m/s = 7.59 km/sec
Satellite B: h = 838 km so R+h = 7216 km = 7.216 e6 m g' = 9.8*(6378/7216)^2 = 8.66 m/sec^2 so v = sqrt(8.32*7.216e6) = 7748.36 m/s = 7.79 km/sec
The figure is showing a volume of 2.4 mL becuase it's feel 4 little segments.
Therefore, the answer is 2.4 mL.
It is called observation because you observe with your nose by semlling things your eyes by looking at things your ears by hearing things your tongue by tasting things and your hands by feeling things