Kinetic energy is the energy that is associated with motion. It is the energy possessed by an object that is moving. It is calculated from one-half the product of the mass and the square of the velocity of the object. From this, we can calculate the mass of the object. We do as follows:
KE = mv^2/2
500 J = m(5 m/s)^2 / 2
m = 40 kg
Answer:
No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.
Explanation:
A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.
Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:
* When the diameter and length are comparable (i.e have the same measurement)
When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.
Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.
Search each one of them up on GOOGLE it’s easier trust me
Answer: I = 111.69 pA
Explanation: The hall effect is all about the fact that when a semiconductor is placed perpendicularly to a magnetic field, a voltage is generated which could be measured at right angle to the current path. This voltage is known as the hall voltage.
The hall voltage of a semiconductor sensor is given below as
V = I×B/qnd
Where V = hall voltage = 1.5mV =1.5/1000=0.0015V
I = current =?,
n= concentration of charge (electron density) = 5.8×10^20cm^-3 = 5.8×10^20/(100)³ = 5.8×10^14 m^-3
q = magnitude of an electronic charge=1.609×10^-19c
B = strength of magnetic field = 5T
d = thickness of sensor = 0.8mm = 0.0008m
By slotting in the parameters, we have that
0.0015 = I × 5/5.8×10^14 × 1.609×10^-19×0.0008
0.0015 = I×5/7.446×10^-8
I = (0.0015 × 7.446×10^-8)/5
I = 111.69*10^(-12)
I = 111.69 pA