Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
BBBBBBBB!!!!! ATOMIC MASSES :D
Answer:
no of atoms
Explanation:
for each amonia molecule one nitrogen atom bind with 3 hydrogen atoms
Speed is the same as the initial: 25m/s.
*if* you need vectors though:
final velocity = (25*cos(35), -25*sin(35) ) m/s
Acceleration is the rate of change of a the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. Calculation of such is straightforward, if we are given the final velocity, the initial velocity and the total time interval. We can just use the kinematic equations. However, if we are not given the final velocity, it would not be possible to use the kinematic equations. One possible to calculate this value would be by generating an equation of distance with respect to time and getting the second derivative of the equation.