Answer:
δ N2(g) = 1.1825 g/L
Explanation:
- δ ≡ m/v
- Mw N2(g) = 28.0134 g/mol
ideal gas:
∴ P = (837 torr)×( atm/760 torr) = 1.1013 atm
∴ T = 45.0 °C + 273.15 = 318.15 K
∴ R = 0.082 atm.L/K.mol
⇒ n/V = P/R.T
⇒ n/V = (1.1013 atm) / ((0.082 atm.L/K.mol)(318.15 k))
⇒ n/V = 0.0422 mol/L
⇒ δ N2(g) = (0.042 mol/L)×(28.0134 g/mol) = 1.1825 g/L
The moles of fluorine present are 71/19 = 3.74
Now, we know that one mole of gas at 273 K and 101.3 kPa (S.T.P.) occupies 22.4 liters
Volume of 3.74 moles at S.T.P = 3.74 x 22.4
Volume = 83.776 L = 83,776 mL
Now, we use Boyle's law, that for a given amount of gas,
PV = constant
P x 6843 = 101.3 x 83776
P = 1,240 kPa
Answer:
<u>H2PO4- is a proton donor and HPO42_ is a proton acceptor</u>
Explanation:
Step 1: What are hydrogen ion donor and acceptor
in the following reaction we see that:
⇒ H2PO4- is more likely to give a H+ ion to form HPO42-.
⇒HPO42- is more likely to take a H+ ion, to form H2PO4-
The reaction of an acid in water solvent is described as a dissociation
:
HA ⇔ H+ + A-
⇒where HA is a proton acid
So, H2PO4- = HA and HPO42- = A-
Acids are proton donors. So, <u>H2PO4- is a proton donor and HPO42_ is a proton acceptor</u>
Hi there,
the answer to the blank is: boiling point
When a liquid is heated, the temperature stops rising at the liquid's boiling point.
Hope this is correct :)
Have a great day
Answer: N = 2.78 × 10^23 atoms
There are N = 2.78 × 10^23 atoms in 70g of Au2cl6
Completed Question:
Calculate the number of gold atoms in a 70g sample of gold(III) chloride . Be sure your answer has a unit symbol if necessary, and round it to significant digits
Explanation:
Given:
Molar mass of Au2cl6 = 303.33g/mol
Mass of Au2cl6 = 70g
Number of moles of Au2cl6 = 70g/303.33g/mol = 0.231mol
According to the chemical formula of Au2cl6,
1 mole of Au2cl6 contains 2 moles of Au
Number of moles of Au = 2 × 0.231mol = 0.462mole
There are 6.022 × 10^23 atoms in 1 mole of an element.
Number of Atom of gold in 0.462 mole of gold is:
N = 0.462 mol × 6.022 × 10^23 atoms/mol
N = 2.78 × 10^23 atoms