Answer:A. An increase in temperature increases the reaction rate.
Explanation:because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Answer:
d- 334 kJ/g.
Explanation:
You can detect it from the units of the different choices.
a- has the unit J/g.°C that is the unit of the specific heat capacity (c).
b- has the unit Kelvin that is the unit of temperature.
c- has the unit g/mol which is the unit of the molar mass.
d- has the unit kJ/g which is the unit of the enthalpy divided by the no. of rams that is the specific entha;py of fusion.
<em>So, the right choice is: d- 334 kJ/g.</em>
Answer:
You cannot make observations if you are 57 seconds late into the lab.
Explanation:
The atomic nucleus can split by decay into 2 or more particles as a result of the instability of its atomic nucleus due to the fact that radioactive elements possess an unstable atomic nucleus.
Now, the primary particles which are emitted by radioactive elements in order to make them decay are alpha, beta & gamma particles.
The half life equation is;
N_t = N₀(½)^(t/t_½)
Where:
t = duration of decay
t_½ = half-life
N₀ = number of radioactive atoms initially
N_t = number of radioactive atoms remaining after decay over time t
We are given;
t = 57 secs
N₀ = 100 g
Now, half life of Nitrogen-16 from online sources is 7.2 seconds. t_½ = 7.2
Thus;
N_t = 100(1/2)^(57/7.2)
N_t = 0.4139g
We are told that In order to make observations, you require at least .5g of material.
The value of N_t you got is less than 0.5g, therefore you cannot make observations if you are 57 seconds late.
If they were connected at one time than you would expect to find similar rock structures because they eroded, weathered, and we’re formed most likely at the same time out of the same material. So basically since they were near each other they were under the same or similar conditions.