<span>The total
energy stored is the sum of the energy stored in the capacitors. If the
capacitors are series connected
capacitors, then the charging current is the same for both capacitors. This
means that each capacitor stores the same energy and the stored energy is two
times the energy of any of the capacitors.</span>
hi brainly user! ૮₍ ˃ ⤙ ˂ ₎ა
⊱┈────────────────────────┈⊰

Considering that the pulley is fixed, the force applied should be equal to the weight of the object - of 400N.

Pulleys or pulleys are mechanical tools used to assist in the movement of objects and bodies. There are two types of pulleys: fixed and movable. While the fixed pulley changes the direction of force, the moving pulley helps to decrease the force needed to move the object or body in question.
As the statement only tells us a pulley, we must consider that it is fixed, <u>because generally when it is mobile, this information is highlighted in the question</u>.
In this way, a fixed pulley only changes the direction of the applied force. Thus, the force must have the same magnitude as the weight of the object to be moved. If the bucket weighs 400N, the force applied to the pulley must be 400N.
<u>Therefore, having a fixed pulley, the force applied must be equal to the weight of the object, and will be 400N.</u>
In order to determine the required force to stop the car, proceed as follow:
Calculate the deceleration of the car, by using the following formula:

where,
v: final speed = 0m/s (the car stops)
vo: initial speed = 36m/s
x: distance traveled = 980m
a: deceleration of the car= ?
Solve the equation above for a, replace the values of the other parameters and simplify:

Next, consider that the formula for the force is:

where,
m: mass of the car = 820 kg
a: deceleration of the car = 0.66m/s^2
Replace the previous values and simplify:

Hence, the required force to stop the car is 542.20N
Answer:
The option is B is not true for Hubble telescope.