Answer:
Intensity
Explanation:
The intensity of a sound wave is equal to the ratio between to the power emitted by the source divided by the area of the spherical surface through which the wave propagates:

where
P is the power
is the area of the spherical surface
r is the distance from the source
As we see from the formula, the intensity is inversely proportional to the square of the distance from the source:

so, intensity is the correct answer.
Arrhenius' equation relates the dependence of rate constant of a chemical reaction to the temperature. The equation below is the Arrhenius equation

where k is the rate constant, T is the absolute temperature. As the temperature of the system increases, the rate constant also increases and vice versa.
Answer:
= 625 nm
Explanation:
We now that for
for maximum intensity(bright fringe) d sinθ=nλ n=0,1,2,....
d= distance between the slits, λ= wavelength of incident ray
for small θ, sinθ≈tanθ= y/D where y is the distance on screen and D is the distance b/w screen and slits.
Given
d=1.19 mm, y=4.97 cm, and, n=10, D=9.47 m
applying formula
λ= (d*y)/(D*n)
putting values we get

on solving we get
= 625 nm
Answer:
the object has a net force acting on it, it will accelerate the object will speed up, slow down, or change direction.
Explanation:
The trachea is a tube that carries air inside the lungs.