The answer is B artificial selection
Explanation:
Work done is the force applied to move a body through a specific or particular direction.
It is also the difference in the amount of energy expended in using an effort.
Work done is given as;
Work done = F x d CosФ
F is the force applied
d is the displacement
Ф is the angle
The unit of work done is in Joules.
The nucleus is the core of an atom which is made up of protons and neutrons. Every single type of atom has a dense center and the majority of the mass is located in here.
Answer:1.5
Explanation:
Given
mass of first cart 
initial Velocity 
mass of second cart 

In the absence of External Force we can conserve momentum




Final kinetic Energy of two masses



Initial Kinetic Energy



