1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
9

A 2.0-kg laptop sits on the horizontal surface of the seat of a car moving at 8.0 m/s. The driver starts slowing down to stop. F

ind the minimum stopping distance so the computer does not slip and fall onto the floor if the coefficient of static friction between the seat and the laptop is 0.40 and the coefficient of kinetic friction is 0.20.
Physics
1 answer:
ivanzaharov [21]3 years ago
4 0

Answer: 32.65\ m

Explanation:

Given

mass of laptop m=2 kg

The velocity of car u=8 m/s

The coefficient of static friction is \mu_s=0.4

The coefficient of kinetic friction is \mu_k=0.2

As the car is moving, so the coefficient of kinetic friction comes into play

deceleration offered by friction \mu_kg=0.2\times 9.8\ m/s^2

Using the equation of motion v^2-u^2=2as\\

insert the values

0^2-8^2=2(-0.2\times 9.8)s\\\\s=\dfrac{64}{1.96}\\\\s=32.65\ m

You might be interested in
Which is TRUE about static electricity?
Fed [463]

Answer:

the first one stationary charge

3 0
2 years ago
Read 2 more answers
In the diagram, what is happening to the temperature at Point B? Question 6 options: A. The temperature is rising as the molecul
raketka [301]
<span> B. The temperature is not rising because the heat is being used to break the connections between the molecules </span>
6 0
3 years ago
Read 2 more answers
Explain Rutherford's experiment?
Ipatiy [6.2K]

Answer:

Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.

Explanation:

Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.

When this alpha particles were made to strike the aluminum foil, some passed through the foil, some were reflected and speed others changed.

The ones reflected encountered heavier particle known as the nucleus, preventing them from passing through it. The whole observations indicated that atom is not is uniformly charged sphere as proposed by J.J Thomson.

Rutherford proposed new model known as the Planetary model of atom, which described atom as containing a nucleus which is revolved by electron, just like planets revolve round the sun. And this nucleus contains opposite charge to electron which is proton, to balance the motion.

7 0
3 years ago
Use the table of electric force between objects in two different interactions to answer the question. Interaction Charge on Obje
forsale [732]

Answer:?that’s a lot

Explanation:

6 0
3 years ago
A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s
Pavlova-9 [17]

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

6 0
3 years ago
Other questions:
  • What is heat, and how does it affect the molecules<br> in a substance?
    8·1 answer
  • When two oceanic plates collide, it creates _____.
    14·2 answers
  • Alisha uses wire to connect a battery, a lightbulb, and a switch, but the bulb does not light up even though the switch is in th
    15·1 answer
  • Which statement is correct about an element’s identifying spectrum? a) The light reflected off an element produces a unique iden
    7·2 answers
  • Many people in eighteenth-century England and America opposed slavery. What do you think are the best ways to fight against inju
    12·2 answers
  • Question 12 of 20
    9·1 answer
  • true or false. because the speed of an object can change from one instant to the next, dividing the distance covered by the time
    15·2 answers
  • What will the reading of the voltmeter be at the instant the switch returns to position a if the inertia of the d'Arsonval movem
    12·1 answer
  • Is Nuclear Energy renewable? Why or why not? Use in your own words.
    6·2 answers
  • A body of mass 5kg is ejected vertically from the ground when a force of 600N acts on it for 0.1s.Calculate the velocity with wh
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!