The best way to do this is to draw a picture of ΔFKL and include line segment KM that is perpendicular to FL. This creates ΔFKM which is a 45°-45°-90° triangle and ΔLKM which is a 30°-60°-90° triangle.
Find the lengths of FM and ML. Then, FM + ML = FL
<u>FM</u>
ΔFKM (45°-45°-90°): FK is the hypotenuse so FM =
<u>ML</u>
ΔLKM (30°-60°-90°): from ΔFKM, we know that KM =
, so KL =
<u>FM + ML = FL</u>

= 
Answer:
Solution given
tan θ=opposite/adjacent=y/x is a required answer.
Answer:
Step-by-step explanation:
224-146=78