Answer:
x=-56 y=80
Step-by-step explanation:
solved with delta way
Answer:
C. 
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Trig Derivatives
Logarithmic Derivatives
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Derivative Rule [Product Rule]:
![\displaystyle f'(x) = \frac{d}{dx}[ln(x)]cos(x) + ln(x)\frac{d}{dx}[cos(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bln%28x%29%5Dcos%28x%29%20%2B%20ln%28x%29%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%28x%29%5D)
- Logarithmic Derivative:
![\displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)\frac{d}{dx}[cos(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7Bx%7Dcos%28x%29%20%2B%20ln%28x%29%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%28x%29%5D)
- Trig Derivative:
![\displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)[-sin(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7Bx%7Dcos%28x%29%20%2B%20ln%28x%29%5B-sin%28x%29%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e
Answer:
90°-33°=57°
57=2x+1
-1. -1
56=2x divide both sides by 2
28=x
x =28
Answer:
a) 13 m/s
b) (15 + h) m/s
c) 15 m/s
Step-by-step explanation:
if the location is
y=x²+3*x
then the average velocity from 3 to 7 is
Δy/Δx=[y(7)-y(3)]/(7-3)=[7²+3*7- (3²+3*3)]/4= 13 m/s
then the average velocity from x=6 to to x=6+h
Δy/Δx=[y(6+h)-y(6)]/(6+h-6)=[(6+h)²+3*(6+h)- (6²+3*6)]/h= (2*6*h+3*h+h²)/h=2*6+3= (15 + h) m/s
the instantaneous velocity can be found taking the limit of Δy/Δx when h→0. Then
when h→0 , limit Δy/Δx= (15 + h) m/s = 15 m/s
then v= 15 m/s
also can be found taking the derivative of y in x=6
v=dy/dx=2*x+3
for x=6
v=dy/dx=2*6+3 = 12+3=15 m/s
Answer:
The input or independent variable is x.
Step-by-step explanation: