1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
2 years ago
8

Orion is visible on winter evenings in the northern hemisphere but not summer evenings because of_______________.

Physics
1 answer:
Bess [88]2 years ago
3 0

Answer:

c. the location of Earth in its orbit.

Explanation:

It is known that the earth orbits the sun once every 365 days, during this time the<u> constellations that are visible in the sky are changing</u>.

This is due to the fact that depending on the position, we have access to different parts of the celestial tomb, that is, the stars and constellations visible from earth.

This is why Orion is visible in winter but not in summer, since in summer it is in a <u>different part of the orbit</u> and with visibility towards different constellations.

the answer is c. the location of Earth in its orbit.

You might be interested in
An object of mass 6 kg. is resting on a horizontal surface. A horizontal force
son4ous [18]

Answer:

a) The work done by the applied force is 1500 joules.

b) The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) 300 joules of energy are lost during motion.

Explanation:

a) Since the object has a constant mass, on which a constant horizontal force is exerted. The work done by the force (W), measured in joules, is defined by the following expression:

W = F\cdot \Delta x (1)

Where:

F - Force, measured in newtons.

\Delta x - Distance, measured in meters.

If we know that F = 15\,N and \Delta x = 100\,m, then the work done by the force exerted on the object is:

W = (15\,N)\cdot (100\,m)

W = 1500\,J

The work done by the applied force is 1500 joules.

b) At first we need to calculate the net acceleration of the object (a), measured in meters per square second. By assuming a constant acceleration, we use the following kinematic formula:

\Delta x = v_{o}\cdot t +\frac{1}{2}\cdot a\cdot t^{2} (2)

Where v_{o} is the initial velocity of the object, measured in meters per second.

We clear the acceleration within the equation above:

\frac{1}{2}\cdot a \cdot t^{2} =  \Delta x-v_{o}\cdot t

a = \frac{2\cdot (\Delta x - v_{o}\cdot t)}{t^{2}}

If we know that \Delta x = 100\,m, v_{o} = 0\,\frac{m}{s} and t = 10\,s, then the net acceleration experimented by the object is:

a = \frac{2\cdot \left[100\,m-\left(0\,\frac{m}{s} \right)\cdot (10\,s)\right]}{(10\,s)^{2}}

a = 2\,\frac{m}{s^{2}}

By the 2nd Newton's Law, we construct the following equation of equilibrium under the consideration of a friction force acting against the motion of the object:

\Sigma F = F - f = m\cdot a (3)

Where:

F - External force exerted on the object, measured in newtons.

f - Kinetic friction force, measured in newtons.

If we know that F = 15\,N, m = 6\,kg and a = 2\,\frac{m}{s^{2}}, the kinetic friction force is:

f = F-m\cdot a

f = 15\,N-(6\,kg)\cdot \left(2\,\frac{m}{s^{2}} \right)

f = 3\,N

The work done by friction (W'), measured in joules, is:

W' = f\cdot \Delta x (4)

W' = (3\,N) \cdot (100\,m)

W' = 300\,J

And the net work experimented by the object is:

\Delta W = 1500\,J - 300\,J

\Delta W = 1200\,J

By the Work-Energy Theorem we understand that change in translational kinetic energy (\Delta K), measured in joules, is equal to the change in net work. That is:

\Delta K = \Delta W (5)

If we know that \Delta W = 1200\,J, then the change in translational kinetic energy is:

\Delta K = 1200\,J

The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) The energy lost by the object is equal to the work done by the force of friction. Therefore, 300 joules of energy are lost during motion.

7 0
3 years ago
A transformer has a primary coil with 375 turns of wire and a secondary coil with 1,875 turns. An AC voltage source connected ac
Sonbull [250]

Answer:

The rms voltage (in V) measured across the secondary coil is 459.62 V

Explanation:

Given;

number of turns in the primary coil, Np = 375 turns

number of turns in the secondary coil, Ns = 1875 turns

peak voltage across the primary coil, Ep = 130 V

peak voltage across the secondary coil, Es = ?

\frac{N_P}{N_s} = \frac{E_p}{E_s} \\\\E_s = \frac{N_sE_p}{N_p} \\\\E_s = \frac{1875*130}{375} \\\\E_s = 650 \ V

The rms voltage (in V) measured across the secondary coil is calculated as;

V_{rms} = \frac{V_0}{\sqrt{2} } = \frac{E_s}{\sqrt{2} } \\\\V_{rms} = \frac{650}{\sqrt{2} } = 459.62 \ V

Therefore, the rms voltage (in V) measured across the secondary coil is 459.62 V

7 0
3 years ago
A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic field str
Kisachek [45]

Answer:

B_2 = 1.71 mT

Explanation:

As we know that the magnetic field near the center of solenoid is given as

B = \frac{\mu_0 N i}{L}

now we know that initially the length of the solenoid is L = 18 cm and N number of turns are wounded on it

So the magnetic field at the center of the solenoid is 2 mT

now we pulled the coils apart and the length of solenoid is increased as L = 21 cm

so we have

\frac{B_1}{B_2} = \frac{L_2}{L_1}

now plug in all values in it

\frac{2.0 mT}{B_2} = \frac{21}{18}

B_2 = 1.71 mT

3 0
2 years ago
In a weak acid solution, _____.
erastovalidia [21]

Answer:

A)

Explanation:

8 0
3 years ago
Explain the following defects of a simple electric cell:
eimsori [14]

Answer:

Explanation:

The two major defects of simple electric cells causes current supplied to be for short time. These defects are: polarization and local action.

a. Polarization: This is a defect caused by an accumulation of hydrogen bubbles at the positive electrode of the cell. It can be prevented by the use of vent, using a hydrogen absorbing material or the use of a depolarizer.

b. Local Action: This is the gradual wearing away of the electrode due to impurities in the zinc plate. It can be controlled by the amalgamation of the zinc plate before it is used.

4 0
2 years ago
Other questions:
  • Q: Which direction are the force vectors pointing for a bullet fired from a gun. Assume that the bullet is traveling to the righ
    9·2 answers
  • 20. A car battery with a 12-V emf and an internal resistance of 0.050 Ω is being charged with a current of 60 A. Note that in th
    10·1 answer
  • A wire is formed into a circle having a diameter of 10.3 cm and is placed in a uniform magnetic field of 2.98 mT. The wire carri
    13·1 answer
  • Indicate whether the following statements are always true or can be false. An object's velocity will change if a net force acts
    7·1 answer
  • A uniform cylinder of radius 25 cm and mass 27 kg is mounted so as to rotate freely about a horizontal axis that is parallel to
    13·1 answer
  • Suppose an object is moving 2.1 m/s north on a river, but the river is flowing to the east at a velocity of 1.2 m/s. What is the
    12·1 answer
  • A photon of wavelength 15 x 10^-12 m hits an electron at rest, causing the electron to move. The photon bounces off the electron
    9·1 answer
  • If we double the diameter of a telescope's mirror, what happens to its light-gathering ability? View Available Hint(s) If we dou
    14·1 answer
  • Two charged particles exert an electric force of 27 N on each other. What will the magnitude of the force be if the distance bet
    12·1 answer
  • A 2. 0 kg-book is at rest on a 30 o inclined plane. The normal force acting on the book by the inclined plane is most nearly
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!