Answer:
The velocity of the freight car decreases.
Explanation:
This question is answered by the conservation of momentum principle.
When the freight car is moving at a certain speed, it has a constant momentum.
We will call this M1.
The equation for M1 will be:
M1 = Mass * Speed
Now when the coal is dumped into the freight car, the Mass increases.
Since conservation of momentum states that the momentum will remain the same. We have:
M1 = (Mass of freight + Mass of coal) * Speed
Since M1 is constant, if the mass increases, the speed had to decrease to keep the equation true.
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
Answer:
B. Its density is lower than that of water
Explanation:
density = mass / volume
density of the liquid = 85 / 100 = 0.85 g/cm^3
now,
density of water is 1 g/cm^3 which is greater than the density of the given liquid ( 0.85 g/cm^3 )
<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>
Answer:
L=55.9m
Explanation:
The equation for the period of a simple pendulum is:

In our case what we know is the period and the acceleration of gravity, and we need to know the length of the pendulum, so we can write:

Which for our values is:
