Answer:
The last two bearings are
49.50° and 104.02°
Explanation:
Applying the Law of cosine (refer to the figure attached):
we have
x² = y² + z² - 2yz × cosX
here,
x, y and z represents the lengths of sides opposite to the angels X,Y and Z.
Thus we have,

or

substituting the values in the equation we get,

or

or
X = 26.47°
similarly,

or

or
Y = 49.50°
Consequently, the angel Z = 180° - 49.50 - 26.47 = 104.02°
The bearing of 2 last legs of race are angels Y and Z.
Answer: 40.84 m
Explanation:
Given
Radius of the disk, r = 2m
Velocity of the disk, v = 7 rad/s
Acceleration of the disk, α = 0.3 rad/s²
Here, we use the formula for kinematics of rotational motion to solve
2α(θ - θ•) = ω² - ω•²
Where,
ω• = 0
ω = v/r = 7/2
ω = 3.5 rad/s
2 * 0.3(θ - θ•) = 3.5² - 0
0.6(θ - θ•) = 12.25
(θ - θ•) = 12.25 / 0.6
(θ - θ•) = 20.42 rad
Since we have both the angle and it's radius, we can calculate the arc length
s = rθ = 2 * 20.42
s = 40.84 m
Thus, the needed distance is 40.84 m
Answer:
the smallest angle from the antennas is <em>47.3°</em>
Explanation:
We first need to write the expression for the relation between the wavelength (λ) and the frequency (f) of the wave, and then solve for the wavelength.
Therefore, the relation is:
λ = c /f
where
- c is the speed of light constant
- λ is the wavelength
- f is the frequency
Thus,
λ = (3 × 10⁸ m/s) / (3.4 MHz)
= (3 × 10⁸ m/s) / (3.4 MHz)(10⁶ Hz/1 MHz)
= 88.235 m
Therefore, the smallest angle measured (from the north of east) from the antennas for the constructive interference of the two-radio wave can be calculated as
θ = sin⁻¹(λ / d)
where
- d is the distance between the two radio antennas
Thus,
θ = sin⁻¹(88.235 / 120)
<em>θ = 47.3 °</em>
<em></em>
Therefore, the smallest angle from the antennas, measured north of east, at which constructive interference of two radio waves occurs is <em>47.3 °</em>.
Coefficient of volume expansion is 8.1 ×10⁻⁴ C⁻¹.
<u>Explanation:</u>
The volume expansion of a liquid is given by ΔV,
ΔV = α V₀ ΔT
ΔT = change in temperature = 48.5° C
α = coefficient of volume expansion =?
V₀ = initial volume = 2.35 m³
We need to find α , by plugin the given values in the equation and by rearranging the equation as,

= 8.1 ×10⁻⁴ C⁻¹.
Answer:
The answer is "Walk three days a week, gradually adding distance and hills."
Explanation:
The FITT Principle <u>guides a person in becoming a fitter version of himself by following a particular frequency, intensity, time and type of exercise in order to achieve his goals.</u>
<u>Frequency</u>- this refers to how often a person should do an exercise. For example, 5 times a week of intense core workout.
<u>Intensity</u>- this refers to the person's vigour or strength in doing the workout. This depends whether the person is doing a high-intensity or a low-intensity exercise.
<u>Time</u>- this refers to the length of a person's exercise. This will largely depend on every individual's fitness level.
<u>Type of Exercise</u>- this refers to the exercise that a person should incorporate in his training<u> in order to avoid injuries of using the same muscles over and over again.</u>
Among the choices above, it is only the second choice (Walk three days a week, gradually adding distance and hills) that follows the FITT principle. Walking shouldn't be kept at the same pace and distance for many weeks, since it results to<em> boredom and overuse injuries. </em>This will also lead to a plateau when it comes to people who are trying to lose weight because the body has already well-adjusted to the exercise and cannot be challenged anymore.
<em>Gradually increasing the distance and hills will allow the person to be more challenged </em>and<em> </em>will also increase his desire to workout (because he is seeing results).