Answer:
Frequency of oscillation, f = 4 Hz
time period, T = 0.25 s
Angular frequency, 
Given:
Time taken to make one oscillation, T = 0.25 s
Solution:
Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:
f = 
f = 
Frequency of oscillation, f = 4 Hz
The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.
Therefore, time period, T = 0.25 s
Angular frequency of oscillation is given by:



Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.
The two fields were physical quantities are used in motion calculations are length and mass with time.
The physical quantity in a field is referred as every point in a particular space time.
<h3>
How physical quantities are used in motion calculations?</h3>
If we consider an object, the physical property of the object is considered as physical quantity and to measure that object is known as units. The Physical quantity can be classified as elemental physical quantity and derived physical quantity. Length, mass, time, etc.. are elemental physical quantity, momentum, density, acceleration, etc... are derived physical quantity. Only for charge and temperature the physical quantity will be less than zero.
Length, mass and time are the physical quantities used in motion calculations.
Learn more about motion calculations,
brainly.com/question/8701763
#SPJ2
Answer:
Momentum, p = 5 kg-m/s
Explanation:
The magnitude of the momentum of an object is the product of its mass m and speed v i.e.
p = m v
Mass, m = 3 kg
Velocity, v = 1.5 m/s
So, momentum of this object is given by :

p = 4.5 kg-m/s
or
p = 5 kg-m/s
So, the magnitude of momentum is 5 kg-m/s. Hence, this is the required solution.