Explanation:
Molar mass
The mass present in one mole of a specific species .
The molar mass of a compound , can easily be calculated as the sum of the all the individual atom multiplied by the number of total atoms .
(a) P₄
Molar mass of of the atoms are -
Phosphorous , P = 31 g/mol
Molecular mass of P₄ = ( 4 * 31 ) = 124 g/mol .
(b) H₂O
Molar mass of of the atoms are -
Hydrogen , H = 1 g/mol
oxygen , O = 16 g/mol.
Molecular mass of H₂O = ( 2 * 1 ) + ( 1 * 16 ) = 18 g/mol
(c) Ca(NO₃)₂
Molar mass of of the atoms are -
calcium , Ca = 40 g/mol
nitrogen, N = 14 g/mol
oxygen , O = 16 g/mol.
Molecular mass of Ca(NO₃)₂ = ( 1 * 40 ) + ( 2 * 14 ) + ( 6 * 16 ) = 164 g/mol.
(d)CH₃CO₂H (acetic acid)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol.
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molecular mass of CH₃CO₂H =( 2 * 12 ) + (2 * 16 ) + (4 * 1 ) = 60 g/mol.
(e) C₁₂H₂₂O₁₁ (sucrose, cane sugar).
Molar mass of of the atoms are -
Carbon , C = 12 g/mol.
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molecular mass of C₁₂H₂₂O₁₁ = (12 * 12 ) + ( 22 * 1 ) + ( 11 * 16 ) = 342 g/mol.
By using what they know to produce new and helpful products
Answer:
The symbol of isotopes used for blood flow analysis is
<u>Explanation:
</u>
- Isotopes are the substances that exhibit the same atomic number but has a different mass number of an element.
- The atomic number explains the number of protons present in the element and mass number explains the number of neutrons available in the element.
- For blood flow analysis, the isotope element is cerium-141 and it is used in the chemical examination of blood flow particles.
- Symbol used for this isotope is
, where 141 indicates the amount of mass present and 58 indicates the proton number and 83 indicates neutron number present in that element.
- The amount of mass in an atom is calculated by the sum of protons and neutrons present in it. Thus mass of isotope is 141 obtained by the sum of 58 protons and 83 neutrons present in that isotope.
Answer:
Iron is the densest out of the given options.
Explanation:
Oxygen
1.429 g/L
Water
1000 g/L
Hydrogen Peroxide
1450 g/L
Iron
7874 g/L
Iron Oxide
5240 g/L