Answer: the contents of this container weighs 4905 kg.m/s²
Explanation:
Given that;
volume of a container V = 0.5 m³
we know that standard gravitational acceleration g = 9.81 m/s²
specific volume of liquid filled in the container v = 0.001 m³/kg
now we express the equation for weight of the container.
W = mg
W = (pV)g
W = Vg / ν
so we substitute
W = (0.5 m³)(9.81 m/s ) / 0.001 m³/kg
W = 4.905 / 0.001
W = 4905 kg.m/s²
Therefore, the contents of this container weighs 4905 kg.m/s²
Answer:
1 and 3
Explanation:
because they are going up from 0
So lunar eclips earth between sun and moon
Solar eclips moon between sun and earth.
About the 3th.. im not sure, it depends on if you meen a total solar eclips or not... i think total is more rare then a lunar eclipse..
Refer to the diagram shown below.
In 2.4 hours, the distance traveled by the first airplane heading a 51.3° at 750 mph is
a = 750*2.4 = 1800 miles.
The second airplane travels
b = 620*2.4 = 1488 mile
The angle between the two airplanes is
163° - 51.3° = 111.7°
Let c = the distance between the two airplanes after 2.4 hours.
From the Law of Cosines, obtain
c² = a² + b² - 2ab cos(111.7°)
= 3.24 x 10⁶ + 2.2141 x 10⁶
c = 2335.41 miles
Answer: 2335.4 miles
From the solution that I have done, the wavelength in the question that we have is 31.88 cm
<h3>How to solve for the wavelength</h3>
The frequency in the question is given as 40/30 = 1.33 hz
Next we have to solve for V
= 425/10
= 42.5 cm/s
v = frequency * wavelength
we have to put in the values in the formula. This would be
42.5 = 1.33 x wavelength
we have to divide through by 1.33 to get the wavelength. This would be
42.5/1.333 = wavelength
31.88 cm = wavelength
Hence we can say that the wavelength in the question that we have here is 31.88 cm
Read more on wavelength here:
brainly.com/question/10728818
#SPJ4