Solution :
Given
Diameter of the roulette ball = 30 cm
The speed ball spun at the beginning = 150 rpm
The speed of the ball during a period of 5 seconds = 60 rpm
Therefore, change of speed in 5 seconds = 150 - 60
= 90 rpm
Therefore,
90 revolutions in 1 minute
or In 1 minute the ball revolves 90 times
i.e. 1 min = 90 rev
60 sec = 90 rev
1 sec = 90/ 60 rec
5 sec = 
= 75 rev
Therefore, the ball made 75 revolutions during the 5 seconds.
Answer:
The direction is due south
Explanation:
From the question we are told that
The energy of the electron is 
The earths magnetic field is 
Generally the force on the electron is perpendicular to the velocity of the elecrton and the magnetic field and this is mathematically reresented as

On the first uploaded image is an illustration of the movement of the electron
Looking at the diagram we can see that in terms of direction the magnetic force is


generally i cross k = -j
so the equation above becomes


This show that the direction is towards the south
<span>light colored and smooth surface would most likely be the best reflector of electromagnetic energy.Light, shiny surfaces are the best reflectors of radiation and they will allow the waves to reflect and bounce off rather than absorb. we can consider mirror as the example ,it will only reflect the light energy falling on them and it will not absorb. The darker coloured and rough surfaced substances will definitely absorb some amount of light falling on it. so light coloured smooth or shiny surfaced material would be the best reflector for electromagnetic energy.</span>
Answer:

Where
represent the force for each of the 5 cases
presented on the figure attached.
Explanation:
For this case the figure attached shows the illustration for the problem
We have an inverse square law with distance for the force, so then the force of gravity between Earth and the spaceship is lower when the spaceship is far away from Earth.
Th formula is given by:

Where G is a constant 
represent the mass for the earth
represent the mass for the spaceship
represent the radius between the earth and the spaceship
For this reason when the distance between the Earth and the Spaceship increases the Force of gravity needs to decrease since are inversely proportional the force and the radius, and for the other case when the Earth and the spaceship are near then the radius decrease and the Force increase.
Based on this case we can create the following rank:

Where
represent the force for each of the 5 cases
presented on the figure attached.