Diffusion is the process of a substance spreading out to evenly fill its container or environment. Rate of diffusion of a gas is inversely proportional to the molar mass of the gas.

Lighter(lower) the molar mass of the gas , faster will be its rate of diffusion and heavier (higher) the molar mass of the gas , slower will be its rate of diffusion.
We have to arrange the given gases from slowest rate of diffusion to fastest rate of diffusion that means we need to arrange gases from higher molar mass to lower molar mass.
Molar mass of given gases are :
Cl = 35.5 g/mol
Xe = 131.29 g/mol
He = 4.00 g/mol
N = 14.00 g/mol
So correct order for slowest rate of diffusion (highest molar mass) to fastest rate of diffusion (lowest molar mass) is :
Xe , Cl , N , He
Xe having the highest molar mass will have the slowest rate of diffusion and He with lowest molar mass will have the fastest rate of diffusion, so option 'c' is correct.
Note : Slowest rate of diffusion = High Molar Mass
Fastest rate of diffusion = Low Molar Mass
The reaction is shown below,
Step 1: Hydration of Alkene: In first step
Ethene is hydrated to Ethanol through
Hydroboration Reaction.
Step 2: Oxidation of Primary Alcohol: In this step partial oxidation of ethanol is carried out using mild Oxidizing agent <span>Pyridinium chlorochromate (
PCC) and Acetaldehyde is produced.
Step 3: Reduction of Acetaldehyde followed by Oxidation: In this step, first acetaldehyde is reduced to
secondary alcohol using
grignard reagent. After that the sec. alcohol is oxidized to
ketone by using oxidizing agent CrO</span>₃.
Answer:
7. A) I, II
; 8. D) 2.34e9 kJ
Step-by-step explanation:
7. Combustion of ethanol
I. The negative sign for ΔH shows that the reaction is exothermic.
II. The enthalpy change would be different if gaseous water were produced.
That's because it takes energy to convert liquid water to gaseous water, and this energy is included in the value of ΔH.
III. The reaction is a redox reaction, because
- Oxygen is reacting with a compound
- The oxidation number of C increases
- The oxidation number of O decreases.
IV. The products of the reaction occupy a smaller volume than the reactants, because 3 mol of gaseous reactant are forming 2 mol of gaseous product.
Therefore, only I and II are correct.
7. Hindenburg
Data:
V = 2.00 × 10⁸ L
p = 1.00 atm
T = 25.1 °C
ΔH = -286 kJ·mol⁻¹
Calculations:
(a) Convert temperature to kelvins
T = (25.1 + 273.15) K = 298.25 K
(b) Moles of hydrogen
Use the <em>Ideal Gas Law</em>:
pV = nRT
n = (pV)/(RT)
n = (1.00 × 2.00 × 10⁸)/(0.082 06 × 298.25) = 8.172 × 10⁶ mol
(c) Heat evolved
q = nΔH = 8.172 × 10⁶ × (-286) = -2.34 × 10⁹ kJ
The hydrogen in the Hindenburg released 2.34e9 kJ
.
Answer: When a convergent boundary occurs between two oceanic plates, one of those plates will subduct beneath the other. Normally the older plate will subduct because of its higher density. The subducting plate is heated as it is forced deeper into the mantle, and at a depth of about 100 miles (150 km) the plate begins to melt.
Explanation:
Answer:
the first option is the correct answer