Answer:
In a fossil fuel power plant the chemical energy stored in fossil fuels such as coal, fuel oil, natural gas or oil shale and oxygen of the air is converted successively into thermal energy, mechanical energy and, finally, electrical energy.
Answer: 406 hours
Explanation:

where Q= quantity of electricity in coloumbs
I = current in amperes = 39.5 A
t= time in seconds = ?
The deposition of copper at cathode is represented by:

Coloumb of electricity deposits 1 mole of copper
i.e. 63.5 g of copper is deposited by = 193000 Coloumb
Thus 19.0 kg or 19000 g of copper is deposited by =
Coloumb

(1hour=3600s)
Thus it will take 406 hours to plate 19.0 kg of copper onto the cathode if the current passed through the cell is held constant at 39.5 A
Answer:
it means the earth is rotating-
Explanation:
Answer:
C.Melt both cubes and look for a broader range of melting temperatures. The one that melts over a broader range of temperatures is the amorphous solid.
Explanation:
Amorphous solids is one that do not have a fixed melting points but melt over a wide range of temperature due to the irregular shape hence its name. Contrariwise crystalline solids, have a fixed and sharp melting point.
This comes in handy to solve the riddle. We can characterise the pair with the melting point property.
Answer:
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
Explanation:
First of all, you have to translate the words into an equation.
Fe(iii)2O3 + C ==> Fe + CO2
The easiest way to tackle this is to start with the Oxygens and balance them. They must balance by going to the greatest common factor which is 6. So you multiply the molecule by whatever it takes to get the Oxygens to 6
2 Fe(iii)2O3 + C ==> Fe + 3 CO2
Now work on the irons. There 2 on the left and just 1 on the right. So you need to multiply the iron by 2.
2 Fe(iii)2O3 + C ==> 2 Fe + 3 CO2
Finally it is the turn of the carbons. There are 3 on the right, so you must make the carbon on the left = 3
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
And you are done.