The given compound is Aluminum sulfate, Al2(SO4)3:
Molar masses:
Aluminum = 27 g/mol
Sulfur = 32 g/mol
Oxygen = 16 g/mol
The total molar mass is 342 g/mol
The ratio by mass of the elements:
Aluminum = 27*2/342
= 0.16
Sulfur = (32*3)/342
= 0.28
Oxygen = (16*12)/342
= 0.56
<span />
Answer: They always have the same functional groups.
Explanation:
use quizlet too if you have toooo
1. The molar mass of the unknown gas obtained is 0.096 g/mol
2. The pressure of the oxygen gas in the tank is 1.524 atm
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>1. How to determine the molar mass of the gas </h3>
- Rate of unknown gas (R₁) = 11.1 mins
- Rate of H₂ (R₂) = 2.42 mins
- Molar mass of H₂ (M₂) = 2.02 g/mol
- Molar mass of unknown gas (M₁) =?
R₁/R₂ = √(M₂/M₁)
11.1 / 2.42 = √(2.02 / M₁)
Square both side
(11.1 / 2.42)² = 2.02 / M₁
Cross multiply
(11.1 / 2.42)² × M₁ = 2.02
Divide both side by (11.1 / 2.42)²
M₁ = 2.02 / (11.1 / 2.42)²
M₁ = 0.096 g/mol
<h3>2. How to determine the pressure of O₂</h3>
From the question given above, the following data were obtained:
- Volume (V) = 438 L
- Mass of O₂ = 0.885 kg = 885 g
- Molar mass of O₂ = 32 g/mol
- Mole of of O₂ (n) = 885 / 32 = 27.65625 moles
- Temperature (T) = 21 °C = 21 + 273 = 294 K
- Gas constant (R) = 0.0821 atm.L/Kmol
The pressure of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both side by V
P = nRT / V
P = (27.65625 × 0.0821 × 294) / 438
P = 1.524 atm
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
Learn more about ideal gas equation:
brainly.com/question/4147359
Answer:
4.858 g
Explanation:
Start with the formula
density = 
density = 1.98 g/mL
volume = 2.45 mL
mass = ??
rearrange the formula to solve for mass
(density) x (volume) = mass
Add in the substitutes and solve for mass
1.98 g/mL x 2.45 mL = 4.858 g
Answer:
The photosynthesis process is interrupted.
Explanation:
Algae produce energy using the photosynthesis process. The reduction of 3-phosphoglycerate to glyceraldehyde 3-phosphate is part of this process. Despite this reduction reaction being light-independent (Calvin Cycle), the precursors of this reaction are synthesized in light-dependent steps.
This is the reason why the reduction is blocked when the algae is placed in the dark.