Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
Answer:
283.725 kJ ⋅ mol − 1
Explanation:
C(s) + 2Br2(g) ⇒ CBr4(g) , Δ H ∘ = 29.4 kJ ⋅ mol − 1
Br2(g) ⇒ Br(g) , Δ H ∘ = 111.9 kJ ⋅ mol − 1
C(s) ⇒ C(g) , Δ H ∘ = 716.7 kJ ⋅ mol − 1
4*eqn(2) + eqn(3) ⇒ 2Br2(g) + C(s) ⇒ 4 Br(g) + C(g) , Δ H ∘ = 1164.3 kJ ⋅ mol − 1
eqn(1) - eqn(4) ⇒ 4 Br(g) + C(g) ⇒ CBr4(g) , Δ H ∘ = -1134.9 kJ ⋅ mol − 1
so,
average bond enthalpy is
= 283.725 kJ ⋅ mol − 1
Answer:
b. milk spoiling and c. firecrackers exploding
Explanation:
These are both chemical changes, the composition of them change when this happens and it cannot be reversed
Here I found some info at Yahoo answers: https://answers.yahoo.com/question/index?qid=20090119191941AAB7oAb
The more electronegative an atom is the more unwilling it is to lose its electrons in a compound. If you do try to take a very EN atom away from a compound you'll need to apply a lot of energy for that to happen. I can give an example of a single atom though
<span>Cl has 7 valence electron filled and every atom wants to be like nobles (noble gases), so it's not going to give an electron away b/c it's really close to being like a noble gas. Noble gases are the most stable atoms, which is why I say stability counts.</span>
To Find :
The volume of 12.1 moles hydrogen at STP.
Solution :
We know at STP, 1 mole of gas any gas occupy a volume of 22.4 L.
Let, volume of 12.1 moles of hydrogen is x.
So, x = 22.4 × 12.1 L
x = 271.04 L
Therefore, the volume of hydrogen gas at STP is 271.04 L.