To determine the number of phosphorus atoms from a given mass, we need to determine the number of moles of the substance by dividing the molar mass which for in this case is equal to 123.88 g/mol for P4. Then, we multiply Avogadro's number. It <span>represents the number of
units in one mole of any substance. This has the value of 6.022 x 10^23 units /
mole.
mole P4 = 158 kg P4 ( 1000 g / 1 kg ) ( 1 mol / 123.88 g ) = 1275.43 mol P4
# of P4 atoms = 1275.43 mol P4 ( 6.022 x 10^23 atoms P4 / 1 mol P4 ) = 7.68x10^26 atoms P4</span>
<span>When water freezes, the molecules move farther apart. </span>
<span>Answer: 8.15s
</span><span />
<span>Explanation:
</span><span />
<span>1) A first order reaction is that whose rate is proportional to the concenration of the reactant:
</span><span />
<span>r = k [N]
</span><span />
<span>r = - d[N]/dt =
</span><span />
<span>=> -d[N]/dt = k [N]
</span><span />
<span>2) When you integrate you get:
</span><span />
<span>N - No = - kt
</span>
<span></span><span /><span>
3) Half life => N = No / 2, t = t'
</span><span />
<span>=> No - No/ 2 = kt' => No /2 = kt' => t' = (No/2) / k
</span><span />
<span>3) Plug in the data given: No = 0.884M, and k = 5.42x10⁻²M/s
</span>
<span /><span /><span>
t' = (0.884M/2) / (5.42x10⁻²M/s) = 8.15s</span>
B is the right answer because it’s a double replacement reaction and the potassium is balanced with the sulphate
Answer:
Gas
Increase the pressure
Explanation:
Let's refer to the attached phase diagram for CO₂ (not to scale).
<em>At -57 °C and 1 atm, carbon dioxide is in which phase?</em>
If we look at the intersection between -57°C and 1 atm, we can see that CO₂ is in the gas phase.
<em>At 10°C and 2 atm carbon dioxide is in the gas phase. From these conditions, how could the gaseous CO₂ be converted into liquid CO₂?</em>
Since at 10°C and 2 atm carbon dioxide is below the triple point, the only way to convert it into liquid is by increasing the pressure (moving up in the vertical direction).