Answer:
c) Fullerene and carbon nanotubes because they have empty spaces inside the molecules
Explanation:
Fullerene and carbon nanotubes would be the most desired in order to hold the cancer fighting drugs and to carry them through the body safely.
- These molecules have empty spaces in them.
- The cavities makes it possible for storage.
- As they pass through the body, they can be held perfectly well to their target site of action.
Answer:
All flowering is regulated by the integration of environmental cues into an internal sequence of processes. These processes regulate the ability of plant organs to produce and respond to an array of signals. The numerous regulatory switches permit precise control over the time of flowering.
Explanation:
Turns into vapor. not all of the molecules are liquid have the same energy
Answer:
- <em>The maximum amount of copper allowed in 100 g of water is </em><u><em>0.00013 g</em></u>
Explanation:
To find the maximum amount of copper (in grams) allowed in 100 g of water use the maximum amount ratio (1.3 mg / kg) and set a proportion with the unknown amount of copper (x) and the amount of water (100 g):
First, convert 100 g of water to kg: 100 g × 1 kg / 1000 g = 0.1 kg.
Now, set the proportion:
- 1.3 mg Cu / 1 Kg H₂O = x / 0.1 kg H₂O
Solve for x:
- x = 0.1 kg H₂O × 1.3 mg Cu / 1 kg H₂O = 0.13 mg Cu
Convert mg to grams:
- 0.13 mg × 1 g / 1,000 mg = 0.00013 g
Answer: 0.00013 g of copper.